Although spatial language and spatial cognition covary over development and across languages, determining the causal direction of this relationship presents a challenge. Here we show that mature human spatial cognition depends on the acquisition of specific aspects of spatial language. We tested two cohorts of deaf signers who acquired an emerging sign language in Nicaragua at the same age but during different time periods: the first cohort of signers acquired the language in its infancy, and 10 y later the second cohort of signers acquired the language in a more complex form. We found that the second-cohort signers, now in their 20s, used more consistent spatial language than the first-cohort signers, now in their 30s. Correspondingly, they outperformed the first cohort in spatially guided searches, both when they were disoriented and when an array was rotated. Consistent linguistic marking of left-right relations correlated with search performance under disorientation, whereas consistent marking of ground information correlated with search in rotated arrays. Human spatial cognition therefore is modulated by the acquisition of a rich language.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901441PMC
http://dx.doi.org/10.1073/pnas.0914044107DOI Listing

Publication Analysis

Top Keywords

spatial cognition
16
spatial language
12
signers acquired
12
language
9
emerging sign
8
sign language
8
human spatial
8
cohort signers
8
acquired language
8
correlated search
8

Similar Publications

Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.

View Article and Find Full Text PDF

The brain is composed of a dense and ramified vascular network of arteries, veins and capillaries of various sizes. One way to assess the risk of cerebrovascular pathologies is to use computational models to predict the physiological effects of reduced blood supply and correlate these responses with observations of brain damage. Therefore, it is crucial to establish a detailed 3D organization of the brain vasculature, which could be used to develop more accurate in silico models.

View Article and Find Full Text PDF

Visual search becomes slower with aging, particularly when targets are difficult to discriminate from distractors. Multiple distractor rejection processes may contribute independently to slower search times: dwelling on, skipping of, and revisiting of distractors, measurable by eye-tracking. The present study investigated how age affects each of the distractor rejection processes, and how these contribute to the final search times in difficult (inefficient) visual search.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most commonly occurring brain disorder, characterized by the accumulation of amyloid-β (Aβ) and tau, subsequently leading to neurocognitive decline. 3-Amino-1-propanesulfonic acid (TPS) and its prodrug, currently under clinical trial III, serve as promising therapeutic agents targeting Aβ pathology by specifically preventing monomer-to-oligomer formation. Inspired by the potency of TPS prodrug, we hypothesized that conjugating TPS with human serum albumin (HSA) could enhance brain delivery and synergistically inhibit Aβ aggregation in mild to moderate AD.

View Article and Find Full Text PDF

IGF1 enhances memory function in obese mice and stabilizes the neural structure under insulin resistance via AKT-GSK3β-BDNF signaling.

Biomed Pharmacother

January 2025

Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea. Electronic address:

Obesity is a prevalent metabolic disorder linked to insulin resistance, hyperglycemia, increased adiposity, chronic inflammation, and cognitive dysfunction. Recent research has focused on developing therapeutic strategies to mitigate cognitive impairment associated with obesity. Insulin growth factor-1 (IGF1) deficiency is linked to insulin resistance, glucose intolerance, and the progression of obesity-related central nervous system (CNS) disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!