Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Due to its common dysregulation in epithelial-based cancers and extensive characterization of its role in tumor growth, epidermal growth factor receptor (EGFR) is a highly validated target for anticancer therapies. There has been particular interest in the development of monoclonal antibodies (mAbs) targeting EGFR, resulting in two approved mAb-based drugs and several others in clinical trials. It has recently been reported that treatment with combinations of noncompetitive mAbs can induce receptor clustering, leading to synergistic receptor down-regulation. We elucidate three key aspects of this phenomenon. First, we show that highly potent combinations consisting of two noncompetitive mAbs that target EGFR domain 3 reduce surface receptor levels by up to 80% with a halftime of 0.5-5 h in both normal and transformed human cell lines to an extent inversely proportional to receptor density. Second, we find the mechanism underlying down-regulation to be consistent with recycling inhibition. Third, in contrast to the agonism associated with ligand-induced down-regulation, we demonstrate that mAb-induced down-regulation does not activate EGFR or its downstream effectors and it leads to synergistic reduction in migration and proliferation of cells that secrete autocrine ligand. These new insights will aid in ongoing rational design of EGFR-targeted antibody therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2922117 | PMC |
http://dx.doi.org/10.1073/pnas.0913476107 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!