Cytotoxic triterpenoids from Ganoderma lucidum.

Phytochemistry

Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.

Published: September 2010

A systematic study of the metabolites in Ganoderma lucidum led to isolation of 43 triterpenoids, six of them (1-6) are hitherto unknown. The structures of the latter were elucidated on the basis of spectroscopic studies and comparison with the known related compounds. All of the compounds were assayed for their inhibitory activities against human HeLa cervical cancer cell lines. Some compounds exhibit significant cytotoxicity, and their structure-activity relationships are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2010.06.005DOI Listing

Publication Analysis

Top Keywords

ganoderma lucidum
8
cytotoxic triterpenoids
4
triterpenoids ganoderma
4
lucidum systematic
4
systematic study
4
study metabolites
4
metabolites ganoderma
4
lucidum led
4
led isolation
4
isolation triterpenoids
4

Similar Publications

<b>Background and Objective:</b> Laccase as a ligninolytic enzyme has been known for its green-catalysis mechanism, which has the potential to be applied to food industries. Lignocellulose found in agro-industrial waste is promising for laccase production as a substrate, that could be encountered in pineapple (<i>Ananas comosus</i>) and Arabica coffee (<i>Coffea arabica</i>) industrial residue. To boost enzyme activity, laccase characterization was performed using <i>Ganoderma lucidum</i> under solid-state fermentation.

View Article and Find Full Text PDF

Ganoderma lucidum is a traditional Chinese medicine used to treat Alzheimer's disease (AD), whose main active ingredient is polysaccharides. A heteropolysaccharide named GLPZ-1 was isolated from Ganoderma lucidum. GLPZ-1 (6.

View Article and Find Full Text PDF

Removal of cyanobacterial harmful algal blooms (HABs) from contaminated local park lake using mycelial pellets.

Heliyon

January 2025

Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.

Eutrophication and hypereutrophication in lakes foster harmful blue-green algal blooms, which pose a significant threat to the ecological health of freshwater reservoirs. This study investigated the effectiveness of the bio-flocculation approach using the fungus strain BGF4A1 to remove these harmful blooms, specifically targeting cyanobacterial species like PCC-7914. Key flocculation parameters, cyanobacterial concentrations, adsorption kinetics, and pellet morphology were explored in this research.

View Article and Find Full Text PDF

Manganese Peroxidase Participates in the Liquid-Solid-Gas Triphase Regulation on Microbial Degradation of Lignocellulose in Solid-State Fermentation.

Biotechnol Bioeng

January 2025

Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.

The three-phase structure of solid-state fermentation (SSF) directly affects substrate degradation and fermentation efficiency. However, the mechanism of three-phase regulation on lignocellulose utilization and microbial metabolism is still unclear. Based on comparative transcriptome analysis, a lignocellulose degrading enzyme, manganese peroxidase (GlMnP), which was significantly affected by water stress meanwhile related to triphase utilization, was screened to reveal the mechanism using Ganoderma lucidum as the reference strain.

View Article and Find Full Text PDF

GlSIRT1 deacetylates and activates pyruvate kinase to improve pyruvate content and enhance heat stress resistance in Ganoderma lucidum.

Microbiol Res

January 2025

Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, PR China; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China. Electronic address:

Heat stress is a prevalent environmental stressor. Previous studies have shown that heat stress drives many cellular changes in Ganoderma lucidum. Interestingly, glycolysis is activated during heat stress, which could contribute to increased heat resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!