Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The role of aquaporin-4 (AQP4) in the regulation of astrocytes function has been widely investigated. However, there is little information about its contribution to the drug metabolism enzymes such as Cytochrome P4502E1. In the present study, we investigated whether AQP4 is involved in the process of the cell damage caused by MPP(+) and LPS through regulating the expression of CYP2E1 in astrocytes. Compared to the wild-type, in primary astrocytes, AQP4 knockout increased the cell damage and the reactive oxygen species (ROS) production which were induced by MPP(+), LPS and ethanol. Notably, AQP4 knockout enhanced the up-regulation of the expression of CYP2E1 in astrocytes exposed to MPP(+), LPS and ethanol. Furthermore, Diallylsulphide (DAS), a CYP2E1 inhibitor, partially or almost abolished the cell injury and the ROS production of the astrocytes induced by MPP(+) and LPS. These findings indicate AQP4 protects astrocytes from the damage caused by MPP(+) and LPS through reducing the ROS production correlation to the diminished expression of CYP2E1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2936815 | PMC |
http://dx.doi.org/10.1016/j.toxlet.2010.06.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!