A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Melting temperature of surface-tethered DNA. | LitMetric

Melting temperature of surface-tethered DNA.

Anal Biochem

Departament d'Enginyería Química, Universitat Rovira i Virgili, Tarragona, Spain.

Published: November 2010

A method for the accurate determination of the melting temperature (T(m)) of surface-immobilized DNA duplexes that exploits the fluorescence-quenching properties of gold is reported. A thiolated single-stranded DNA probe is chemisorbed onto a gold surface and then hybridized to a fluorophore-labeled complementary sequence. On formation of the duplex, the fluorescence of the label is effectively quenched by the gold surface. As the temperature is increased and the duplex denatures, the fluorophore label moves away from the gold surface and the fluorescence signal is again observed. The increase in fluorescence is measured as the temperature is ramped, and using first-derivative plots, the T(m) is determined. To demonstrate the approach, the T(m) of the cystic fibrosis DF508 mutation was determined in three different phases: in solution, in suspension immobilized on gold nanoparticles, and immobilized on gold film-coated substrate. The technique was further applied to optimize conditions for differentiation between a surface-immobilized DF508 mutant probe and a mutant/wild-type target exploiting increasing stringency in varying salt and formamide concentrations. The approach has application in optimization of assay conditions for biosensors that use gold substrates as well as in melting curve analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2010.06.049DOI Listing

Publication Analysis

Top Keywords

gold surface
12
melting temperature
8
immobilized gold
8
gold
7
temperature surface-tethered
4
surface-tethered dna
4
dna method
4
method accurate
4
accurate determination
4
determination melting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!