The aim of this study is to investigate cross-linked gelatin-chitosan nanofibers produced by means of electrospinning. Gelatin and chitosan nanofibers were electrospun and then cross-linked by glutaraldehyde (GTA) vapor at room temperature. Scanning electron microscopy (SEM) images showed that the cross-linked mats could keep their nanofibrous structure after being soaked in deionized water at 37° C. The cross-linking mechanism was discussed based on FT-IR results. The two main mechanisms of cross-linking for chitosan and gelatin-chitosan complex are Schiff base reaction and acetalization reaction. For gelatin, the mechanism of cross-linking was Schiff base reaction. The mechanical properties of nanofibrous mats were improved after cross-linking. The biocompatibility of electrospun nanofibrous mats after cross-linking was investigated by the viability of porcine iliac endothelial cells (PIECs). The morphologies of PIECs on the cross-linked nanofibrous mats were observed by SEM. In addition, proliferation of PIECs was tested with the method of methylthiazol tetrazolium (MTT) assay. The results indicate that gelatin-chitosan nanofibrous mats could be a promising candidate for tissue-engineering scaffolds.

Download full-text PDF

Source
http://dx.doi.org/10.1163/092050610X499447DOI Listing

Publication Analysis

Top Keywords

nanofibrous mats
16
gelatin chitosan
8
tissue-engineering scaffolds
8
schiff base
8
base reaction
8
cross-linking
6
mats
5
nanofibrous
5
cross-linking gelatin
4
chitosan complex
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!