A recombinant Haematobia irritans irritans trypsin inhibitor (HiTI - Mw 7030 kDa)) phagemid library was constructed and displayed functionally on the tip of the filamentous M13 phage. A combinatorial library of 7.2 x 10(6) mutants was created with HiTI mutations restricted to the P1'-P3' and P5' positions of the reactive site. This combinatorial library was selected for trypsin-like Pr2 proteases of Metarhizium anisopliae fungus, and 11 HiTI mutants containing the following substitutions: K17G, S18R, D19G, S21A, among 60 sequenced clones, were obtained. In order to confirm the inhibitory activity of the selected sequences, we transferred the selected sequence to the shortest protease inhibitor, the sunflower trypsin inhibitor (SFTI), for inhibitory activity analysis. The hybrid peptide containing the mutated sequence (SFTI-Mut, GRCTRGRGLACFPD-NH2; Ki = 14 µM) presented an apparent inhibition constant (Ki(app)) for Pr2 proteases ≈20-fold lower than the control peptide containing the original HiTI sequence (SFTI-HiTI, GRCTRKSDLSCFPD-NH2; Ki = 259 µM). In conclusion, the present work enabled the selection of a specific HiTI mutant for Pr2 proteases of M. anisopliae fungus using a HiTI combinatorial library on M13 phage surface. Selection of strong binders by phage display and their validation as inhibitors using synthetic hybrid peptides proved to be a powerful technique to generate specific serine protease inhibitors suitable for studies of drug design and enzyme-inhibitor interaction.

Download full-text PDF

Source
http://dx.doi.org/10.2174/138620710792927394DOI Listing

Publication Analysis

Top Keywords

combinatorial library
12
pr2 proteases
12
phage display
8
protease inhibitor
8
synthetic hybrid
8
hybrid peptides
8
trypsin inhibitor
8
m13 phage
8
anisopliae fungus
8
fungus hiti
8

Similar Publications

Objective: In search of efficient anticancer agents, we aimed at the design and synthesis of a library of tetrasubstituted alkenes. These are structural analogues of tamoxifen, one of the widely used anticancer therapeutics.

Methods: Our small organic compound library was prepared via a chemical synthesis in the solution using the Larock three-component coupling reaction, which is known to tolerate diverse functional groups.

View Article and Find Full Text PDF

Epistatic hotspots organize antibody fitness landscape and boost evolvability.

Proc Natl Acad Sci U S A

January 2025

Department of Physics and Astronomy, University of California, Los Angeles, CA 90095.

The course of evolution is strongly shaped by interaction between mutations. Such epistasis can yield rugged sequence-function maps and constrain the availability of adaptive paths. While theoretical intuition is often built on global statistics of large, homogeneous model landscapes, mutagenesis measurements necessarily probe a limited neighborhood of a reference genotype.

View Article and Find Full Text PDF

Small-molecule probes are powerful tools for studying biological systems and can serve as lead compounds for developing new therapeutics. Especially, nitrogen heterocycles are of considerable importance in the pharmaceutical field. These compounds are found in numerous bioactive structures.

View Article and Find Full Text PDF

Novel Tripeptides as Tyrosinase Inhibitors: In Silico and In Vitro Approaches.

Int J Mol Sci

December 2024

Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland.

Tyrosinase is a key enzyme responsible for the formation of melanin (a natural skin pigment with ultraviolet-protection properties). However, some people experience melanin overproduction, so new, safe, and biocompatible enzyme inhibitors are sought. New tripeptide tyrosinase inhibitors were developed using molecular modeling.

View Article and Find Full Text PDF

Development of an FKBP12-recruiting chemical-induced proximity DNA-encoded library and its application to discover an autophagy potentiator.

Cell Chem Biol

December 2024

Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA. Electronic address:

Chemical inducers of proximity (CIPs) are molecules that recruit one protein to another and introduce new functionalities toward modulating protein states and activities. While CIP-mediated recruitment of E3 ligases is widely exploited for the development of degraders, other therapeutic modalities remain underexplored. We describe a non-degrader CIP-DNA-encoded library (CIP-DEL) that recruits FKBP12 to target proteins using non-traditional acyclic structures, with an emphasis on introducing stereochemically diverse and rigid connectors to attach the combinatorial library.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!