Transgenic reporter mice and advances in imaging instrumentation are enabling real-time visualization of cellular mechanisms in living subjects and accelerating the development of novel therapies. Innovative confocal microscope designs are improving their utility for microscopic imaging of fluorescent reporters in living animals. We develop dual-axis confocal (DAC) microscopes for such in vivo studies and create mouse models where fluorescent proteins are expressed in the skin for the purpose of advancing skin therapeutics and transdermal delivery tools. Three-dimensional image volumes, through the different skin compartments of the epidermis and dermis, can be acquired in several seconds with the DAC microscope in living mice, and are comparable to histologic analyses of reporter protein expression patterns in skin sections. Intravital imaging with the DAC microscope further enables visualization of green fluorescent protein (GFP) reporter gene expression in the skin over time, and quantification of transdermal delivery of small interfering RNA (siRNA) and therapeutic efficacy. Visualization of transdermal delivery of nucleic acids will play an important role in the development of innovative strategies for treating skin pathologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904026 | PMC |
http://dx.doi.org/10.1117/1.3432627 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Microneedle patches for topical administration of photodynamic therapy (PDT) sensitizers are attractive owing to their safety, selectivity, and noninvasiveness. However, low-efficiency photosensitizer delivery coupled with the limitations of the hypoxic tumor microenvironment remains challenging. To overcome these issues, we developed an effective microneedle patch based on intermolecular electrostatic interactions within a photosensitizer matrix containing a zinc-containing porphyrin analogue, .
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Food Science, National Taiwan Ocean University, No.2, Beining Rd., Zhongzheng Dist., Keelung City 20224, Taiwan. Electronic address:
For anti-aging and whitening treatment, ascorbic acid-2-glucoside (AA2G) was incorporated into a 4.0 % (w/v) ulvan solution at three concentrations (0.5 %, 1.
View Article and Find Full Text PDFSci Rep
December 2024
School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
Microtextured microneedles are tiny needle-like structures with micron-scale microtextures, and the drugs stored in the microtextures can be released after entering the skin to achieve the effect of precise drug delivery. In this study, the skin substitution model of Ogden's hyperelastic model and the microneedle array and microtexture models with different geometrical parameters were selected to simulate and analyse the flow of the microtexture microneedle arrays penetrating the skin by the finite-element method, and the length of the microneedles was determined to be 200 μm, the width 160 μm, and the value of the gaps was determined to be 420 μm. A four-pronged cone was chosen as the shape of microneedles, and a rectangle was chosen as the shape of the drug-carrying microneedle.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China. Electronic address:
Acute lung injury being one of the earliest and most severe complications during sepsis and macrophages play a key role in this process. To investigate the regulatory effects and potential mechanisms of adipose mesenchymal stem cell derived-exosomes (ADSC-exo) on macrophages and septic mice, ADSCs-exo was administrated to both LPS-induced macrophage and cecal ligation and puncture (CLP) induced sepsis mice. ADSCs-exo was confirmed to inhibit M1 polarization of macrophages and to reduce excessive inflammation.
View Article and Find Full Text PDFNanotechnol Sci Appl
December 2024
Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
Purpose: This study investigates the impact of various mixing parameters and surfactant combinations on the physical characteristics of nanoemulsions produced using high-speed homogenization. Nanoemulsions are explored for their capacity to enhance transdermal drug delivery in pharmaceutical and cosmetic contexts.
Methods: Employing a standard high-speed homogenizer typical in the cosmetic industry, we tested different combinations of Polysorbate (Tween®) and Sorbitan ester (Span®) surfactants under single and intermittent process configurations.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!