A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photocatalyzed surface modification of poly(dimethylsiloxane) with polysaccharides and assay of their protein adsorption and cytocompatibility. | LitMetric

Photocatalyzed surface modification of poly(dimethylsiloxane) with polysaccharides and assay of their protein adsorption and cytocompatibility.

Anal Chem

College of Science, and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.

Published: August 2010

An improved approach for the surface modification of poly(dimethylsiloxane) (PDMS) using carboxymethyl cellulose (CMC), carboxymethyl beta-1,3-dextran (CMD), and alginic acid (AA) was investigated. The PDMS substrates were first oxidized in a H(2)SO(4)/H(2)O(2) solution to transform the Si-CH(3) groups on their surfaces into Si-OH groups. Then methacrylate groups were grafted onto the substrates through a silanization reaction using 3-(trimethoxysilyl)propyl methacrylate. Sequentially, cysteamine was conjugated onto the silanized surfaces by the reaction between the thiol and methacrylate groups under 254 nm UV exposure. Afterward, the amino-terminated PDMS substrates were sequentially reacted with CMC, CMD, and AA in the presence of N-hydroxysuccinimide and 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide, resulting in the grafting of polysaccharides onto PDMS surfaces. The composition and chemical state of the modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS). In addition, the stability and dynamic characteristics of the polysaccharide-grafted PDMS substrates were investigated by XPS and temporal contact angle experiments. A protein adsorption assay using bovine serum albumin (BSA), chicken egg albumin, lysozyme, and RNase-A showed that the introduction of CMD and AA can reduce the adsorption of negatively charged BSA and chicken egg albumin, but increase the adsorption of the positively charged lysozyme and RNase-A. However, CMC-modified PDMS surfaces showed protein-repelling properties, regardless of whether the protein was positively or negatively charged. A cell culture and migration study of glioma C6, MKN-45, MCF-7, and HepG-2 cells revealed that the polysaccharide-modified PDMS greatly improved the cytocompatibility of native PDMS.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac100544xDOI Listing

Publication Analysis

Top Keywords

pdms substrates
12
surface modification
8
modification polydimethylsiloxane
8
protein adsorption
8
pdms
8
methacrylate groups
8
pdms surfaces
8
bsa chicken
8
chicken egg
8
egg albumin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!