We propose dextran and dextran polyaldehyde (DPA) coatings for modification of layer-by-layer (LbL) assembled polyelectrolyte microcapsules which provide stability against aggregation in 0.75 M aqueous solutions of mono- and bivalent ions (Na(+), Cl(-), Ca(2+), HPO(4)(2-)). The microcapsules were prepared of three bilayers of poly(4-styrenesulfonate) (PSS) and poly(allylamine) (PAH). Dextran and its derivatives were attached to amino-terminated surface of the microcapsules via three types of chemical bonds of subsequently increasing strength: (1) hydrogen bonds, (2) hydrolyzable covalent cross-links resulting from aldehydes and primary amines coupling, and (3) nonhydrolyzable covalent C-N single bonds of secondary amines. Attachment of the DPA materials via the latter two types of bonds resulted in strengthening the capsules' walls which preserved a fraction of the microcapsules from disintegration upon electrostatic swelling in 0.1 M NaOH. The non-disintegrated fraction of the DPA-coated microcapsules restored their initial size after pH was decreased back to neutral. The microcapsules coated with the original dextran immobilized via hydrogen bonds and the bare microcapsules were fully dissolved under the alkaline conditions. The preserved fraction of the microcapsules was higher for the DPA materials with higher contents of the aldehyde groups and after conversion of the hydrolyzable covalent cross-links to the nonhydrolyzable secondary amines via reduction with NaBH(4). The higher contents of the aldehyde groups and the reduction led to the lower limiting swelling degree of the DPA-coated microcapsules at alkaline pH. The proposed coatings can be used for colloid stabilization of polyelectrolyte microcapsules in aqueous medium, encapsulation of pH-insensitive macromolecules at the postpreparation stage, and pH-triggered release of encapsulated material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la1018949 | DOI Listing |
Soft Matter
December 2024
Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40, Prague 2, Czech Republic.
Biguanide-based cationic polyelectrolytes are used as key components of interpolyelectrolyte complexes bolstering alginate hydrogel microcapsules employed in cell therapies. Nevertheless, electrostatic complexation of these unique polycations has not been studied before. In this study, the interaction between biguanide condensates and anionic polyelectrolytes with carboxylate groups was studied on a model system of a metformin condensate (MFC) and an anionic diblock polyelectrolyte poly(methacrylic acid)--poly(ethylene oxide) (PMAA-PEO).
View Article and Find Full Text PDFJ R Soc Interface
October 2024
Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
The study of human neural cells, their behaviour and migration are important areas of research in the biomedical field, particularly for potential therapeutic applications. The safety of using neural cells in therapy is still a concern due to a lack of information on long-term changes that may occur. While current methods of cell tracing explore gene manipulations, we elaborate approaches to cell marking with no genetic interference.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Institute of Theoretical and Experimental Biophysics Russian Academy of Science, Institutskaya St., 3, 142290 Puschino, Moscow Region, Russia.
More than half of the global population is unable to consume dairy products due to lactose intolerance (hypolactasia). Current enzyme replacement therapy methods are insufficiently effective as a therapeutic approach to treating lactose intolerance. The encapsulation of β-galactosidase in polyelectrolyte microcapsules by using the layer-by-layer method could be a possible solution to this problem.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal.
Multicompartmental capsules have demonstrated value in fields ranging from drug release, mimetics of artificial cells, to energy conversion and storage. However, the fabrication of devices with different compartments usually requires the use of toxic solvents, and/or the adaptation of technically demanding methods, including precision microfluidics and multistep processes. The spontaneous formation of multi-core capsules resulting from polyelectrolyte complexation at the interface of a prototypic all-aqueous two-phase system is described here.
View Article and Find Full Text PDFPolymers (Basel)
August 2024
College of Pipeline and Civil Engineering China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao 266580, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!