Revealing quantitative structure-activity relationships of transport properties in acene and acene derivative organic materials.

Phys Chem Chem Phys

State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China.

Published: August 2010

The intermolecular electronic coupling (transfer integral) and the intramolecular vibronic coupling (reorganization energy) are key parameters determining the transport properties of organic electronic materials. Using quantum mechanism calculations, we revealed the correlation between the reorganization energies and the partial charge difference values on the conjugated acene backbone, which can be used to evaluate the reorganization energies for acene and acene derivative systems with the same conjugated backbone but different substitutional groups. We used rigorous quantitative functions to investigate the electronic coupling oscillation behavior in slipped-cofacial stacking acene and acene derivative molecules, and revealed characteristic parameters in the electronic coupling oscillation. We suggest using a similar strategy to establish the quantitative structure-activity relationship database for different families of organic semiconducting materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b923862jDOI Listing

Publication Analysis

Top Keywords

acene acene
12
acene derivative
12
electronic coupling
12
quantitative structure-activity
8
transport properties
8
reorganization energies
8
coupling oscillation
8
acene
7
revealing quantitative
4
structure-activity relationships
4

Similar Publications

Photooxidation and Cleavage of Ethynylated 9,10-Dimethoxyanthracenes with Acid-Labile Ether Bonds.

J Org Chem

January 2025

Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts, 02155, United States.

This paper describes a series of 12 9,10-dimethoxyanthracene derivatives functionalized with a range of electronically diverse ethynyl substituents at the 2 and 6 positions, aimed at tuning their optoelectronic properties and reactivity with singlet oxygen (O). Optical spectroscopy, cyclic voltammetry, and density functional theory calculations reveal that the ethynyl groups decrease the HOMO-LUMO gaps in these acenes. Notably, bis(dimethylanilineethynyl) substituents increase the wavelength of absorbance onset by over 60 nm compared to 9,10-dimethoxyanthracene (DMA).

View Article and Find Full Text PDF

Charge transfer (CT) states in polycyclic aromatic hydrocarbons play crucial roles in determining their electronic properties and their potential applications in organic electronics. In this work, we investigate the nature of the excited states in monomers and π-stacked dimers of azulene-fused naphthalene and anthracene systems, focusing on the interplay between structure and excited-state properties. Four different isomers for azulene-fused naphthalene (, , , and ) and anthracene (, , , and ) are considered.

View Article and Find Full Text PDF

Acenes are an important class of polycyclic aromatic hydrocarbons that have gained considerable attention from chemists, physicists, and material scientists, due to their exceptional potential for organic electronics. They serve as an ideal platform for studying the physical and chemical properties of sp carbon frameworks in the one-dimensional limit and also provide a fertile playground to explore magnetism in graphenic nanostructures due to their zigzag edge topology. While higher acenes up to tridecacene have been successfully generated by means of on-surface synthesis, it is imperative to extend their synthesis toward even longer homologues to comprehensively understand the evolution of their electronic ground state.

View Article and Find Full Text PDF

Precisely controlling quantum states is relevant in next-generation quantum computing, encryption, and sensing. Chiral organic chromophores host unique light-matter interactions, which allow them to manipulate the quantized circular polarization of photons. Axially chiral organic scaffolds, such as helicenes or twisted acenes, are powerful motifs in chiral light manipulation.

View Article and Find Full Text PDF

The development of stable and tunable polycyclic aromatic compounds (PACs) is crucial for the advancement of organic optoelectronics. Conventional PACs, such as acenes, often suffer from poor stability due to photooxidation and oligomerization, which are linked to their frontier molecular orbital energy levels. To address these limitations, we designed and synthesized a new class of π-expanded indoloindolizines by merging indole and indolizine moieties into a single polycyclic framework.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!