Case reports from infant twins suggest that abnormal genomic imprinting may be one of the important causes of twin discordance, but it is unknown whether abnormal genomic imprinting occurs in the placenta. Therefore, we sought to determine the relationship between the imprinting of insulin-like growth factor II (IGF-II) in placenta and twin discordance. We analyzed the imprinting and promoter usage of IGF-II in placenta of normal twins (T0 group), weight discordance (T1 group), and phenotype discordance (T2 group). We found the incidence of loss of imprinting (LOI) for IGF-II was higher in the T2 group than that in the T0 and T1 groups, while there was no difference between T0 and T1 groups. The transcripts of promoter 3 were lower in the T2 group than in the T0 and T1 groups, and lower in the twin placenta with LOI than in those with normal imprinting. Our findings indicate that the promoter 3 specific LOI of the IGF-II gene may be closely related with phenotype discordance, not weight discordance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2896629 | PMC |
http://dx.doi.org/10.1155/2010/498574 | DOI Listing |
Curr Issues Mol Biol
December 2024
Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
Morning-time heart attacks are associated with an ablation in the sleep-time dip in blood pressure, the mechanism of which is unknown. The epigenetic changes are the hallmark of sleep and circadian clock disruption and homocystinuria (HHcy). The homocystinuria causes ablation in the dip in blood pressure during sleep.
View Article and Find Full Text PDFEpigenomes
December 2024
School of Veterinary and Animal Science (FMVZ), São Paulo State University (Unesp), Botucatu 18618-681, SP, Brazil.
Early weaning management followed by energy supplementation can lead to metabolic alterations in the calf that exert long-term effects on the animal's health and performance. It is believed that the main molecular basis underlying these metabolic adaptations are epigenetic mechanisms that regulate, activate, or silence genes at different stages of development and/or in response to different environmental stimuli. However, little is known about postnatal metabolic programming in .
View Article and Find Full Text PDFBMC Med
December 2024
School of Biomedical Sciences, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK.
Background: The human ZFP57 gene is a major regulator of imprinted genes, maintaining DNA methylation marks that distinguish parent-of-origin-specific alleles. DNA methylation of the gene itself has shown sensitivity to environmental stimuli, particularly folate status. However, the role of DNA methylation in ZFP57's own regulation has not been fully investigated.
View Article and Find Full Text PDFElife
November 2024
Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally-induced effects on placenta development and function.
View Article and Find Full Text PDFDevelopment
December 2024
Program in Molecular Biology, Cell Biology, and Molecular Biology, Boston University, Boston, MA 02215, USA.
The coordinate regulation of metabolism and epigenetics to establish cell state-specific gene expression patterns during lineage progression is a central aspect of cell differentiation, but the factors that regulate this elaborate interplay are not well-defined. The imprinted Dlk1-Dio3 noncoding RNA (ncRNA) cluster has been associated with metabolism in various progenitor cells, suggesting it functions as a regulator of metabolism and cell state. Here, we directly demonstrate that the Dlk1-Dio3 ncRNA cluster coordinates mitochondrial respiration and chromatin structure to maintain proper cell state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!