Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Intravenous anesthetics have marked effects on memory function, even at subclinical concentrations. Fundamental questions remain in characterizing anesthetic amnesia and identifying affected system-level processes. The authors applied a mathematical model to evaluate time-domain components of anesthetic amnesia in human subjects.
Methods: Sixty-one volunteers were randomized to receive propofol (n = 12), thiopental (n = 13), midazolam (n = 12), dexmedetomidine (n = 12), or placebo (n = 12). With drug present, subjects encoded pictures into memory using a 375-item continuous recognition task, with subsequent recognition later probed with drug absent. Memory function was sampled at up to 163 time points and modeled over the time domain using a two-parameter, first-order negative power function. The parietal event-related P2-N2 complex was derived from electroencephalography, and arousal was repeatedly sampled. Each drug was evaluated at two concentrations.
Results: The negative power function consistently described the course of amnesia (mean R = 0.854), but there were marked differences between drugs in the modulation of individual components (P < 0.0001). Initial memory strength was a function of arousal (P = 0.005), whereas subsequent decay was related to the reaction time (P < 0.0001) and the P2-N2 complex (P = 0.007/0.002 for discrete components).
Conclusions: In humans, the amnesia caused by multiple intravenous anesthetic drugs is characterized by arousal-related effects on initial trace strength, and a subsequent decay predicted by attenuation of the P2-N2 complex at encoding. The authors propose that the failure of normal memory consolidation follows drug-induced disruption of interregional synchrony critical for neuronal plasticity and discuss their findings in the framework of memory systems theory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910207 | PMC |
http://dx.doi.org/10.1097/ALN.0b013e3181dfd401 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!