The Dlk1-Gtl2 imprinting locus is located on mouse distal chromosome 12 and consists of multiple maternally expressed non-coding RNAs and several paternally expressed protein-coding genes. The imprinting of this locus plays a crucial role in embryonic development and postnatal growth. At least one cis-element, the intergenic differentially methylated region (IG-DMR) is required for expression of maternally expressed genes and repression of silenced paternally expressed genes. The mechanism by which the IG-DMR functions is largely unknown. However, it has been suggested that the unmethylated IG-DMR acts as a positive regulator activating expression of non-coding RNAs. Gtl2 is the first non-coding RNA gene downstream of the IG-DMR. Although its in vivo function in the mouse is largely unknown, its human ortholog MEG3 has been linked to tumor suppression in human tumor-derived cell lines. We generated a knockout mouse model, in which the first five exons and adjacent promoter region of the Gtl2 gene were deleted. Maternal deletion of Gtl2 resulted in perinatal death and skeletal muscle defects, indicating that Gtl2 plays an important role in embryonic development. The maternal deletion also completely abolished expression of downstream maternally expressed genes, activated expression of silenced paternally expressed genes and resulted in methylation of the IG-DMR. By contrast, the paternal inherited deletion did not have this effect. These data strongly indicate that activation of Gtl2 and its downstream maternal genes play an essential role in regulating Dlk1-Gtl2 imprinting, possibly by maintaining active status of the IG-DMR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910384PMC
http://dx.doi.org/10.1242/dev.045724DOI Listing

Publication Analysis

Top Keywords

expressed genes
20
paternally expressed
16
maternally expressed
12
perinatal death
8
deletion gtl2
8
gtl2 gene
8
dlk1-gtl2 imprinting
8
imprinting locus
8
non-coding rnas
8
role embryonic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!