Congenital lung lesions comprise a broad spectrum of rare but clinically significant developmental abnormalities, including congenital cystic adenomatoid malformation, bronchopulmonary sequestrations, congenital lobar emphysema, and bronchogenic cysts, which are commonly surgically treated. Although the terms congenital cystic adenomatoid malformation, bronchopulmonary sequestrations, congenital lobar emphysema, and bronchogenic cysts are entrenched in clinical usage and comfortably correspond to rigid pathologic definitions, there is a considerable overlap in the findings. Disregarding the controversy about lesion nomenclature and classification, it is widely accepted that congenital lung lesions result from perturbations in lung and airway embryogenesis. It is generally accepted that both place (level in the tracheobronchial tree) and timing (gestational age) of the embryologic insult correlates with the type of lesion and histopathology that is manifested. The objective of this review is to briefly review normal lung development and to analyze the known molecular mechanisms underlying those diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/j.sempedsurg.2010.03.003 | DOI Listing |
Clin Case Rep
January 2025
Department of Radiology and Radiotherapy, School of Medicine, College of Health Sciences Makerere University Kampala Uganda.
Double outlet right ventricle (DORV) is a rare congenital heart defect where both the aorta and pulmonary artery originate from the right ventricle, often accompanied by additional cardiac anomalies to mitigate circulatory imbalance, though such compensations usually fail. We report a 15-month-old infant with recurrent respiratory infections and poor weight gain, referred for computed tomography angiography. Physical examination showed a small, non-syndromic infant with pallor, tachypnea, irritability, and finger clubbing.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pediatrics and Department of Developmental Biology, University of Pittsburgh, Pittsburgh, USA.
Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease associated with microcephaly and poor neurodevelopmental outcomes. Here we show that the Ohia HLHS mouse model, with mutations in Sap130, a chromatin modifier, and Pcdha9, a cell adhesion protein, also exhibits microcephaly associated with mitotic block and increased apoptosis leading to impaired cortical neurogenesis. Transcriptome profiling, DNA methylation, and Sap130 ChIPseq analyses all demonstrate dysregulation of genes associated with autism and cognitive impairment.
View Article and Find Full Text PDFBMC Pediatr
January 2025
Department of Pediatrics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.
Background: Generalized lymphatic anomaly (GLA) is a rare congenital lymphatic malformation (LM) characterized by multiple infiltrating lymphangiomas in various tissues. Owing to its rarity, information on this disease is obtained mainly through case reports, leading to delayed diagnosis. In this study, we reported a case of generalized lymphatic anomaly in a pediatric patient manifesting as hemorrhagic pleural effusion.
View Article and Find Full Text PDFMultimed Man Cardiothorac Surg
January 2025
Hôpital Maisonneuve-Rosemont (University of Montreal) 5415, l'Assomption, Montréal, QC, Canada.
Sci Rep
January 2025
Department of Pediatric Surgery, West China Hospital of Sichuan University, NO. 37 GUOXUE Lane, Chengdu, 610041, Sichuan Province, China.
Identification of lesion demarcation during thoracoscopic anatomical lesion resection is fundamental for treating children with congenital lung malformation. Existing lesion demarcations do not always meet the needs of clinical practice. This study aimed to explore the safety and efficacy of near-infrared fluorescence imaging with nebulized inhalation of indocyanine green for thoracoscopic anatomical lesion resection in children with congenital lung malformation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!