The recycling of municipal solid waste incineration bottom ash as aggregates for road basement requires assessing the long-term evolution of leachate chemistry. The Dåva (Sweden) and Hérouville (France) pilot-scale roads were monitored during 6 and 10 years, respectively. Calculated saturation indices were combined to batch test modeling to set a simplified geochemical model of the bottom ash materials. A common reactive transport model was then applied to both sites. At Hérouville, pH and the concentration of most elements quickly drop during the first two years to reach a set of minimum values over 10 years. The decrease is less pronounced at Dåva. The evolutions of pH and major element concentrations are fairly well related to the following pH-buffering sequence: portlandite, C-S-H phases or pseudo-wollastonite and, finally, calcite in equilibrium with atmospheric CO(2). Al(OH)(3), barite, ettringite and monohydrocalcite may also control leachate chemistry. Cu release is correctly modeled by DOM complexation and tenorite equilibrium. Temperature has no significant effect on the modeling of leachate chemistry in the range 5-30°C, except at high pH. Effects at road edges and roadside slopes are important for the release of the less reactive elements and, possibly, for carbonation processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2010.06.002 | DOI Listing |
Molecules
December 2024
LAQV/REQUIMTE, Associated Laboratory for Green Chemistry, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.
This paper investigates the use of spent tyre rubber as a precursor for synthesising adsorbents to recover rare earth elements. Through pyrolysis and CO activation, tyre rubber is converted into porous carbonaceous materials with surface properties suited for rare earth element adsorption. The study also examines the efficiency of leaching rare earth elements from NdFeB magnets using optimised acid leaching methods, providing insights into recovery processes.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China. Electronic address:
Despite growing attention to the environmental pollution caused by tire wear particles (TWPs), the effects of pristine and photoaged TWPs (P-TWPs and A-TWPs) and their TWP leachates (TWPLs; P-TWPL and A-TWPL) on key nitrogen removal processes in estuarine sediments remain unclear. This study explores the responses of the denitrification rate, anammox rate, and nitrous oxide (NO) accumulation to P-TWP, A-TWP, P-TWPL, and A-TWPL exposure in estuarine sediments, and assesses the potential biotoxic substances present in TWPLs. P-TWPs reduced the denitrification rate by 17.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Chemistry, Vaal University of Technology, Vanderbijlpark, South Africa.
Due to incessant contamination of the groundwater system near the dumpsite in southwestern Nigeria Basement Complex, this study seeks to evaluate the impact of the Odogbo dumpsite on the local groundwater system by integrating geophysical and geochemical methodologies. Aeromagnetic data covering the study area was acquired, processed, and enhanced to delineate basement features that could potentially be passing plumes to the groundwater system. Concurrently, geoelectric methods using 2-D dipole-dipole imaging and vertical electrical sounding (VES) were utilized to characterize the vulnerability indices of the lithologies underlying the dumpsite.
View Article and Find Full Text PDFWater Res
December 2024
Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé, building 1131, DK-8000, Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing, 100190, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and implementation, Middle East Technical University, Ankara, 06800, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
Terrestrial dissolved organic matter (DOM) is potentially reactive and, upon entering lake ecosystems, can be readily degraded to low-molecular-weight organic matter and dissolved CO. However, to date, there has been limited research on the links between long-term variation in the composition of DOM and CO emissions from lakes. Lake Taihu is a large, shallow, and hyper-eutrophic lake where DOM composition is strongly influenced by inputs from the rivers draining cultivated and urbanized landscapes.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India. Electronic address:
The accumulation of disposable face masks (DFMs) has become a significant threat to the environment due to extensive use during the COVID-19 pandemic. In this research, we investigated the degradation of DFMs after their disposal in landfills. We replicated the potential degradation process of DFMs, including exposure to sunlight before subjecting them to synthetic landfill leachate (LL).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!