Sorption kinetic characteristics of polybrominated diphenyl ethers on natural soils.

Environ Pollut

Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.

Published: September 2010

Sorption kinetic characteristics of BDE-28 and BDE-47 on five natural soils with different organic carbon fractions were investigated, and could be satisfactorily described by a two (fast and slow)-compartment first-order model with the ratio of rate constants ranged from 9 to 94 times. The fast compartment made a dominant contribution (71%-94%) to the total sorption amount in the whole process, and accounted for over 90% of the increase in the total sorption amount at initial 5 h. The influence of the slow compartment on the increase in the total sorption amount became principal (above 90%) in the subsequent stage approximately from 9 h or 25 h to the apparent equilibrium at 265 h. The results proposed the different sorption behaviors of the mathematically classified compartments for BDE-28 and BDE-47, which may correspond to the different soil components, such as soil organic fractions with amorphous and condensed structures, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2010.06.021DOI Listing

Publication Analysis

Top Keywords

total sorption
12
sorption amount
12
sorption kinetic
8
kinetic characteristics
8
natural soils
8
bde-28 bde-47
8
increase total
8
sorption
6
characteristics polybrominated
4
polybrominated diphenyl
4

Similar Publications

Due to increasing plastic production, the continuous release of primary and secondary nanoplastic particles (NPs, <1 μm) has become an emerging contaminant in terrestrial environments. The fate and transport of NPs in subsurface environments remain poorly understood, largely due to the complex interplay of mineralogical, chemical, biological, and morphological heterogeneity. This study examines interactions between abundant subsurface minerals and NPs under controlled water chemistry (1 mM KCl, pH 5.

View Article and Find Full Text PDF

Adsorption isotherms in roasted specialty coffee ( L.): Dataset and statistical tools for optimizing storage conditions and enhancing shelf life.

Data Brief

February 2025

Centro Surcolombiano de Investigación en Café (CESURCAFÉ), Departamento de Ingeniería Agrícola, Universidad Surcolombiana, Neiva-Huila 410001, Colombia.

This work presents a comprehensive dataset of adsorption isotherms and infrared spectral data for roasted specialty coffee ( L.). The dataset includes adsorption isotherms for whole roasted beans and ground coffee at medium (850 µm) and fine (600 µm) particle sizes.

View Article and Find Full Text PDF

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and herbicides are important persistent contaminants that require specific management. A variety of herbicides is stored in fluorinated containers in the form of aquatic solutions. In such environments, the simultaneous release of PFAS and herbicides takes place.

View Article and Find Full Text PDF

Influence of goethite on the fate of antibiotic (tetracycline) in the aqueous environment: Effect of cationic and anionic surfactants.

Sci Total Environ

January 2025

Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India. Electronic address:

Over the last decades, the release and occurrence of organic pollutants in aquatic systems have become a major global concern due to their bioaccumulation, toxicity, and adverse effects on the ecosystem. Tetracycline (TC), a widely used antibiotic, is often found at high concentrations in the aqueous environment and tends to bind with the natural colloids. Post-COVID-19 pandemic, the release of surfactants in the environment has increased due to the excessive use of washing and cleaning products.

View Article and Find Full Text PDF

In the current work, three adsorbent materials were developed: biochar derived from date palm fiber (C), date palm fiber biochar/chitosan nanoparticles (CCS), and biochar/chitosan nanoparticle composite supplemented with glutamine (CCSG). These compounds were used as solid adsorbents to remove As from polluted water. Several characterization approaches were used to investigate all the synthesized solid adsorbents, including thermogravimetric analysis, N adsorption/desorption isotherm, scanning electron microscopy, transmission electron microscopy (TEM), attenuated total reflectance with Fourier transform infrared, and zeta potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!