Autism spectrum disorders (ASD) are characterized by impairments in reciprocal social communication, and repetitive, stereotyped verbal and non-verbal behaviors. Genetic studies have provided a relatively large number of genes that constitute a comprehensive framework to better understand this complex and heterogeneous syndrome. Based on the most robust findings, three observations can be made. First, genetic contributions to ASD are highly heterogeneous and most probably involve a combination of alleles with low and high penetrance. Second, the majority of the mutations apparently affect a single allele, suggesting a key role for gene dosage in susceptibility to ASD. Finally, the broad expression and function of the causative genes suggest that alteration of synaptic homeostasis could be a common biological process associated with ASD. Understanding the mechanisms that regulate synaptic homeostasis should shed new light on the causes of ASD and could provide a means to modulate the severity of the symptoms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tig.2010.05.007DOI Listing

Publication Analysis

Top Keywords

synaptic homeostasis
12
key role
8
role gene
8
gene dosage
8
autism spectrum
8
spectrum disorders
8
asd
5
dosage synaptic
4
homeostasis autism
4
disorders autism
4

Similar Publications

Environmental Enrichment and Epigenetic Changes in the Brain: From the Outside to the Deep Inside.

Subcell Biochem

January 2025

Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.

The brain plays a vital role in maintaining homeostasis and effective interaction with the environment, shaped by genetic and environmental factors throughout neurodevelopment and maturity. While genetic components dictate initial neurodevelopment stages, epigenetics-specifically neuroepigenetics-modulates gene expression in response to environmental influences, allowing for brain adaptability and plasticity. This interplay is particularly evident in neuropathologies like Rett syndrome and CDKL5 deficiency syndrome, where disruptions in neuroepigenetic processes underline significant cognitive and motor impairments.

View Article and Find Full Text PDF

Epilepsy therapy beyond neurons: unveiling astrocytes as cellular targets.

Neural Regen Res

January 2025

Shanghai Fifth People's Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.

Epilepsy is a leading cause of disability and mortality worldwide. However, despite the availability of more than 20 antiseizure medications, more than one-third of patients continue to experience seizures. Given the urgent need to explore new treatment strategies for epilepsy, recent research has highlighted the potential of targeting gliosis, metabolic disturbances, and neural circuit abnormalities as therapeutic strategies.

View Article and Find Full Text PDF

Microglial modulation of neuronal network function and plasticity.

J Neurophysiol

January 2025

Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro. México.

Microglia are the resident immune cells of the central nervous system (CNS), which have been classically viewed as involved in CNS responses to damage and tissue repair. However, microglia are constantly sensing neuronal network activity and changes in the CNS milieu, establishing complex state-dependent microglia-neuron interactions that impact their functions. By doing so, microglia perform a wide range of physiological roles, including brain homeostasis maintenance, control of neural connectivity, network function modulation, as well as functional and morphological plasticity regulation in health and disease.

View Article and Find Full Text PDF

Objectives: Endoplasmic reticulum (ER) stress-induced protein homeostasis perturbation is a core pathological element in the pathogenesis of neurodegenerative diseases. This study aims to clarify the unique role played by C/EBP homologous protein (CHOP) as a biomarker of the unfolded protein response (UPR) in the etiology of chronic pain and related cognitive impairments following chronic constrictive nerve injury (CCI).

Methods: The memory capability following CCI was assessed utilizing the Morris water maze (MWM) and fear conditioning test (FCT).

View Article and Find Full Text PDF

Creatine (Cr) is recognized for its role in enhancing cognitive functions through the phosphocreatine (pCr)-creatine kinase system involved in brain energy homeostasis. It is reversibly converted into pCr by creatine kinase (CK). A brain-specific isoform of CK, known as CK-BB, is implicated in the brain's energy metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!