The effectiveness of conjugated linoleic acid (CLA) as a weight-loss nutraceutical continues to be debatable, suggesting that there may be value in exploring the physiological effects of the lesser-known isomers. The effects of the minor isomer, trans-8, cis-10 (t8, c10)-CLA, in the form of an equimolar mixture with the cis-9, trans-11 (c9, t11) isomer, on body weight and body composition, circulating glucose and lipid concentrations, and liver weights were studied in sixty male Syrian golden hamsters. Animals were randomised to receive for 28 d a semi-purified, hypercholesterolaemic diet (5% dietary fat and 0.25% cholesterol) supplemented at the 2% level with either the t8, c10+c9, t11-CLA mixture, c9, t11-CLA or trans-10, cis-12 (t10, c12)-CLA replacing lard and safflower-seed oil (control). Results show that compared with control, the t8, c10+c9, t11-CLA mixture and t10, c12-CLA-fed animals had lower (P < 0.0001) fat mass following supplementation. Animals consuming t10, c12-CLA also possessed higher lean mass compared with control and c9, t11-CLA groups (P < 0.001). However, the livers of these animals were larger (P < 0.0001) compared with those in the control and other CLA groups. Body weights of the hamsters did not differ across the experimental groups. CLA treatments had no effect on serum glucose or lipid profile, except for inducing higher (P < 0.05) non-HDL-cholesterol concentration with t10, c12-CLA compared with the c9, t11 isomer. Overall, these results indicate that in male hamsters fed a hypercholesterolaemic diet, the t8, c10+c9, t11-CLA mixture does not have an impact on blood lipid profile, but is able to effectively reduce fat mass, without incurring an accompanying liver enlargement.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114510002345DOI Listing

Publication Analysis

Top Keywords

hypercholesterolaemic diet
12
c10+c9 t11-cla
12
t11-cla mixture
12
t10 c12-cla
12
compared control
12
linoleic acid
8
body composition
8
syrian golden
8
golden hamsters
8
hamsters fed
8

Similar Publications

Hepatocellular carcinoma (HCC) is a heterogeneous tumor associated with several risk factors, with non-alcoholic fatty liver disease (NAFLD) emerging as an important cause of liver tumorigenesis. Due to the obesity epidemics, the occurrence of NAFLD has significantly increased with nearly 30% prevalence worldwide. HCC often arises in the background of chronic liver disease (CLD), such as nonalcoholic steatohepatitis (NASH) and cirrhosis.

View Article and Find Full Text PDF

This study aimed to evaluate the effects of sunflower cake (SFC) levels (0, 7, 14, 21, and 28% dry matter) in the diet for feedlot lambs on meat quality and its fatty acid profile. Forty crossbreed non castrated hair lambs were fed with experimental diets through 70 days when they were slaughtered and a Longissimus lumborum section were evaluated for physicochemical quality and fatty acid profile. There were no effects of SFC levels (P > 0.

View Article and Find Full Text PDF

Background: Terminalia catappa is an important medicinal plant. Plants from the genus Terminalia have been reported for antidiabetic effects.

Objective: To study effect of Terminalia catappa leaves aqueous extract in type 2 diabetic rats.

View Article and Find Full Text PDF

Purpose: To study the potential of a candidate probiotic strain belonging to the Enterococcus durans species in alleviating hypercholesterolemia and improving the microbial milieu of rat gut.

Methods: A previously isolated and characterized E. durans strain NPL 1334 was further screened in vitro for its bile salt hydrolyzation and cholesterol assimilation ability.

View Article and Find Full Text PDF

Bile acids (BAs) play important roles in the context of lipid homeostasis and inflammation. Based on extensive preclinical mouse studies, BA signaling pathways have been implicated as therapeutic targets for cardiovascular diseases. However, differences in BA metabolism between mice and humans hamper translation of preclinical outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!