Glucose-dependent insulinotropic polypeptide (gastric inhibitory polypeptide, or GIP), a 42-amino acid incretin hormone, modulates insulin secretion in a glucose-concentration-dependent manner. Its insulinotropic action is highly dependent on glucose concentration that surmounts the hypoglycemia side effects associated with current therapy. In order to develop a GIP-based anti-diabetic therapy, it is essential to establish the 3D structure of the peptide and study its interaction with the GIP receptor (GIPR) in detail. This will give an insight into the GIP-mediated insulin release process. In this article, we report the solution structure of GIP(1-42, human)NH(2) deduced by NMR and the interaction of the peptide with the N-terminus of GIPR using molecular modelling methods. The structure of GIP(1-42, human)NH(2) in H(2)O has been investigated using 2D-NMR (DQF-COSY, TOCSY, NOESY, (1)H-(13)C HSQC) experiments, and its conformation was built by constrained MD simulations with the NMR data as constraints. The peptide in H(2)O exhibits an alpha-helical structure between residues Ser8 and Asn39 with some discontinuity at residues Gln29 to Asp35; the helix is bent at Gln29. This bent gives the peptide an 'L' shape that becomes more pronounced upon binding to the receptor. The interaction of GIP with the N-terminus of GIPR was modelled by allowing GIP to interact with the N-terminus of GIPR under a series of decreasing constraints in a molecular dynamics simulation, culminating with energy minimization without application of any constraints on the system. The canonical ensemble obtained from the simulation was subjected to a detailed energy analysis to identify the peptide-protein interaction patterns at the individual residue level. These interaction energies shed some light on the binding of GIP with the GIPR N-terminus in a quantitative manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/psc.1250 | DOI Listing |
Mol Biol Rep
September 2024
Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey.
In humans, 15 genes encode the class B1 family of GPCRs, which are polypeptide hormone receptors characterized by having a large N-terminal extracellular domain (ECD) and receive signals from outside the cell to activate cellular response. For example, the insulinotropic polypeptide (GIP) stimulates the glucose-dependent insulinotropic polypeptide receptor (GIPR), while the glucagon receptor (GCGR) responds to glucagon by increasing blood glucose levels and promoting the breakdown of liver glycogen to induce the production of insulin. The glucagon-like peptides 1 and 2 (GLP-1 and GLP-2) elicit a response from glucagon-like peptide receptor types 1 and 2 (GLP1R and GLP2R), respectively.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Department of Chemistry, Tufts University, 02155, Medford, Massachusetts, USA.
The gut-derived peptide hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) play important physiological roles including glucose homeostasis and appetite suppression. Stabilized agonists of the GLP-1 receptor (GLP-1R) and dual agonists of GLP-1R and GIP receptor (GIPR) for the management of type 2 diabetes and obesity have generated widespread enthusiasm and have become blockbuster drugs. These therapeutics are refractory to the action of dipeptidyl peptidase-4 (DPP4), that catalyzes rapid removal of the two N-terminal residues of the native peptides, in turn severely diminishing their activity profiles.
View Article and Find Full Text PDFCell Discov
February 2024
Research Center for Deepsea Bioresources, Sanya, Hainan, China.
Class B1 G protein-coupled receptors (GPCRs) are important regulators of many physiological functions such as glucose homeostasis, which is mainly mediated by three peptide hormones, i.e., glucagon-like peptide-1 (GLP-1), glucagon (GCG), and glucose-dependent insulinotropic polypeptide (GIP).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2023
Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
Glucose-dependent insulinotropic polypeptide receptor (GIPR) is a potential drug target for metabolic disorders. It works with glucagon-like peptide-1 receptor and glucagon receptor in humans to maintain glucose homeostasis. Unlike the other two receptors, GIPR has at least 13 reported splice variants (SVs), more than half of which have sequence variations at either C or N terminus.
View Article and Find Full Text PDFElife
July 2021
School of Pharmacy, Fudan University, Shanghai, China.
Glucose-dependent insulinotropic polypeptide (GIP) is a peptide hormone that exerts crucial metabolic functions by binding and activating its cognate receptor, GIPR. As an important therapeutic target, GIPR has been subjected to intensive structural studies without success. Here, we report the cryo-EM structure of the human GIPR in complex with GIP and a G heterotrimer at a global resolution of 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!