Thyroid nodules are a common clinical problem, and fine-needle aspiration biopsy (FNAB) is widely used for its evaluation. Only 5% are malignant, being papillary carcinoma (PC) the most frequent neoplasia. Approximately 20% are classified as indeterminate or suspicious for malignancy. Gene-expression pattern may be useful for diagnosing PC in difficult or ambiguous cases. In our prior study, we were able to apply RT-PCR method in a series of routinely performed FNAB of thyroid nodules using individual, residual samples. In this study, a total of 70 thyroid samples were evaluated for the expression of MPPED2, H/HBA2, MET, FN1, GALE, and QPCT genes, including 24 cases of frozen thyroid tissue, 12 nodular hyperplasia and 12 PC, and the 46 consecutive thyroid FNAB samples, previously analyzed (3 positive, 10 indeterminate and 32 negative for malignancy, and 1 insufficient). FN1, GALE, MET, and QPCT mRNA expression were significantly different in benign and malignant samples, with similar pattern of overexpression in aspirates compared to frozen tissue. H/HBA2 and MPPED2 expression varied. Histological correlation was possible in five indeterminate cases, revealing one PC and four benign lesions. In conclusion, FN1, GALE, MET, and QPCT were significantly overexpressed in thyroid PC. RT-PCR method could be applied to routine FNAB, showing a similar pattern of overexpression. Despite the small number of cases evaluated, our results suggest that molecular analysis may be of assistance in patients with indeterminate/suspicious cytology, adding elements for preoperative diagnosis and better management of these patients.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dc.21423DOI Listing

Publication Analysis

Top Keywords

fn1 gale
16
gale met
12
met qpct
12
molecular analysis
8
frozen tissue
8
fine-needle aspiration
8
aspiration biopsy
8
thyroid nodules
8
rt-pcr method
8
pattern overexpression
8

Similar Publications

Papillary thyroid cancer (PTC) is the most frequent subtype of thyroid cancer, but 20% of cases are indeterminate (i.e., cannot be accurately diagnosed) based on preoperative cytology, which might lead to surgical removal of a normal thyroid gland.

View Article and Find Full Text PDF

Transcriptome of papillary thyroid cancer (PTC) is well characterized and correlates with some prognostic and genotypic factors, but data addressing the interaction between PTC and tumor microenvironment (TME) are scarce. Therefore, in the present study, we aimed to assess the impact of TME on gene expression profile in PTC. We evaluated the gene expression profile in PTC and normal thyroid cells isolated by laser capture microdissection and in whole tissue slides corresponding to the entire tumor.

View Article and Find Full Text PDF

Frequent COL4 mutations in familial microhematuria accompanied by later-onset Alport nephropathy due to focal segmental glomerulosclerosis.

Clin Genet

November 2017

Molecular Medicine Research Center & Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.

Familial microscopic hematuria (FMH) is associated with a genetically heterogeneous group of conditions including the collagen-IV nephropathies, the heritable C3/CFHR5 nephropathy and the glomerulopathy with fibronectin deposits. The clinical course varies widely, ranging from isolated benign familial hematuria to end-stage renal disease (ESRD) later in life. We investigated 24 families using next generation sequencing (NGS) for 5 genes: COL4A3, COL4A4, COL4A5, CFHR5 and FN1.

View Article and Find Full Text PDF

Thyroid nodules are a common clinical problem, and fine-needle aspiration biopsy (FNAB) is widely used for its evaluation. Only 5% are malignant, being papillary carcinoma (PC) the most frequent neoplasia. Approximately 20% are classified as indeterminate or suspicious for malignancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!