Aspartylglycosaminuria (AGU) is a lysosomal storage disease caused by deficient activity of glycosylasparaginase (AGA), and characterized by motor and mental retardation. Enzyme replacement therapy (ERT) in adult AGU mice with AGA removes the accumulating substance aspartylglucosamine from and reverses pathology in many somatic tissues, but has only limited efficacy in the brain tissue of the animals. In the current work, ERT of AGU mice was initiated at the age of 1 week with three different dosage schedules of recombinant glycosylasparaginase. The animals received either 3.4 U of AGA/kg every second day for 2 weeks (Group 1), 1.7 U/kg every second day for 9 days followed by an enzyme injection once a week for 4 weeks (Group 2) or 17 U/kg at the age of 7 and 9 days (Group 3). In the Group 1 and Group 3 mice, ERT reduced the amount of aspartylglucosamine by 34 and 41% in the brain tissue, respectively. No therapeutic effect was observed in the brain tissue of Group 2 mice. As in the case of adult AGU mice, the AGA therapy was much more effective in the somatic tissues than in the brain tissue of the newborn AGU mice. The combined evidence demonstrates that a high dose ERT with AGA in newborn AGU mice is up to twofold more effective in reducing the amount of the accumulated storage material from the brain tissue than ERT in adult AGU animals, indicating the importance of early detection and treatment of the disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10545-010-9158-7 | DOI Listing |
Biomed Phys Eng Express
January 2025
Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, JAPAN.
Clinical research in boron neutron capture therapy (BNCT) has been conducted worldwide. Currently, the Monte Carlo (MC) method is the only dose calculation algorithm implemented in the treatment planning system for the clinical treatment of BNCT. We previously developed the MC-RD calculation method, which combines the MC method and the removal-diffusion (RD) equation, for fast dose calculation in BNCT.
View Article and Find Full Text PDFJ Trauma Acute Care Surg
December 2024
From the Department of Surgery, University of Cincinnati, Cincinnati, Ohio.
Background: Red blood cell (RBC) aggregation can be initiated by calcium and tissue factor, which may independently contribute to microvascular and macrovascular thrombosis after injury and transfusion. Previous studies have demonstrated that increased blood storage duration may contribute to thrombotic events. The aims of this study were to first determine the effect of blood product components, age, and hematocrit (HCT) on the aggregability of RBCs, followed by measurement of RBC aggregability in two specific injury models including traumatic brain injury (TBI) and hemorrhagic shock.
View Article and Find Full Text PDFJ Craniofac Surg
October 2024
Division of Plastic & Reconstructive Surgery, John H. Stroger Hospital of Cook County, Chicago, IL.
Median craniofacial hypoplasia is characterized by tissue deficiency of the midline facial structures and/or brain. Patients can present with a wide variety of facial differences that may or may not require operative intervention. Common reconstructive procedures include cleft lip and/or palate repair, rhinoplasty, and orthognathic surgery, among others.
View Article and Find Full Text PDFINhibitor of Growth (ING1-5) proteins are epigenetic readers that target histone acetyltransferase (HAT) or histone deacetylase (HDAC) complexes to the H3K4Me3 mark of active transcription. ING5 targets Moz/Morf and HBO1 HAT complexes that alter acetylation of H3 and H4 core histones, affecting gene expression. Previous experiments in vitro indicated that ING5 functions to maintain stem cell character in normal and in cancer stem cells.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Laboratory of Immunoendocrinology Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland.
Oxidative stress and neuroinflammation play a pivotal role in pathomechanisms of brain ischemia. Our research aimed to formulate a nanotheranostic system for delivering carnosic acid as a neuroprotective agent with anti-oxidative and anti-inflammatory properties to ischemic brain tissue, mimicked by organotypic hippocampal cultures (OHCs) exposed to oxygen-glucose deprivation (OGD). In the first part of this study, the nanocarriers were formulated by encapsulating two types of nanocores (nanoemulsion (AOT) and polymeric (PCL)) containing CA into multilayer shells using the sequential adsorption of charged nanoobjects method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!