Catecholamines are among first compounds released during stress, and they regulate many functions of the organism, including immune system, via adrenergic receptors (ARs). Spleen, as an immune organ with high number of macrophages, possesses various ARs, from which β(2)-ARs are considered to be the most important for the modulation of immune functions. Nevertheless, little is known about the regulation and involvement of ARs in the splenic function by stress. Therefore, the aim of this work was to measure the gene expression of ARs and several cytokines in the spleen of rats exposed to a single and repeated (14×) immobilization stress (IMO). We have found a significant increase in β(2)-AR mRNA after a single IMO, but a significant decrease in β(2)-AR mRNA and protein level after repeated (14×) IMO. The most prominent decrease was detected in the gene expression of the α(2A)- and α(2C)-AR after repeated IMO. However, changes in mRNA were translated into protein levels only for the α(2C)-subtype. Other types of ARs remained unchanged during the stress situation. Since we proposed that these ARs might affect production of cytokines, we measured gene expression of pro-inflammatory (TNF-α, IL-1β, IL-6 and IL-18) and anti-inflammatory (IL-10 and TGF-β1) cytokines. We detected changes only in IL-6 and IL-10 mRNA levels. While IL-6 mRNA was increased, IL-10 mRNA dropped after repeated IMO. According to these results we suggest that changes of β(2)- and α(2C)-ARs participate in IL-6-mediated processes in the spleen, especially during chronic stress situations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10571-010-9540-x | DOI Listing |
Lab Anim Res
January 2025
Anatomy Department, Faculty of Basic Medical Sciences, Alex Ekwueme, Federal University, Ndufu-Alike, Ebonyi State, Nigeria.
Background: The Microtubules-associated protein tau (MAPT), alpha-synuclein (SNCA), and leucine zipper tumor suppressor 3 (LZTS3) genes are implicated in neurodegeneration and tumor suppression, respectively. This study investigated the regulatory roles of eugenol on paraquat-altered genes.
Results: Forty male Wistar rats divided into five groups of eight rats were used.
Alzheimers Res Ther
January 2025
Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder with both genetic and environmental factors contributing to its pathogenesis. While early-onset AD has well-established genetic determinants, the genetic basis for late-onset AD remains less clear. This study investigates a large Italian family with late-onset autosomal dominant AD, identifying a novel rare missense variant in GRIN2C gene associated with the disease, and evaluates the functional impact of this variant.
View Article and Find Full Text PDFGenome Med
January 2025
Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
Background: Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity.
View Article and Find Full Text PDFEpigenetics Chromatin
January 2025
Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
Background: Colorectal cancer (CRC) remains one of the most common causes of cancer-related mortality worldwide. Its progression is influenced by complex interactions involving genetic, epigenetic, and environmental factors. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been identified as key regulators of gene expression, affecting diverse biological processes, notably programmed cell death (PCD).
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Department of Oncology, The First People's Hospital of Yibin, No.65, Wenxing Street, Cuiping District, Yibin, 644000, China.
Background: Advanced gastric cancer (GC) exhibits a high recurrence rate and a dismal prognosis. Myocyte enhancer factor 2c (MEF2C) was found to contribute to the development of various types of cancer. Therefore, our aim is to develop a prognostic model that predicts the prognosis of GC patients and initially explore the role of MEF2C in immunotherapy for GC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!