Bermuda grass with mosaic symptoms have been found in many parts of Iran. No serological correlation was observed between two isolates of this filamentous virus and any of the members of the family Potyviridae that were tested. Aphid transmission was demonstrated at low efficiency for isolates of this virus, whereas no transmission through seed was observed. A DNA fragment corresponding to the 3' end of the viral genome of these two isolates from Iran and one isolate from Italy was amplified and sequenced. A BLAST search showed that these isolates are more closely related to Spartina mottle virus (SpMV) than to any other virus in the family Potyviridae. Specific serological assays confirmed the phylogenetic analysis. Sequence and phylogenetic analysis suggested that these isolates could be considered as divergent strains of SpMV in the proposed genus Sparmovirus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00705-010-0745-6 | DOI Listing |
Cancer continues to represent a substantial burden in terms of its morbidity and mortality, underscoring the imperative for the development of novel and efficacious treatment modalities. Recent advances in cancer immunotherapy have highlighted the importance of identifying tumour-specific antigens, which can assist the immune system in targeting malignant cells effectively. Phage display technology has emerged as an effective tool for the discovery of novel antigens through cDNA library screening, representing a significant advancement in the field of immunological research.
View Article and Find Full Text PDFFungal Genet Biol
January 2025
Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland. Electronic address:
Zymocin-like killer toxins are anticodon nucleases secreted by some budding yeast species, which kill competitor yeasts by cleaving tRNA molecules. They are encoded by virus-like elements (VLEs), cytosolic linear DNA molecules that are also called killer plasmids. To date, toxins of this type have been found only in budding yeast species (Saccharomycotina).
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Chan Zuckerberg Biohub-San Francisco, 499 Illinois Street, San Francisco, California 94158, USA.
Influenza A viruses (IAVs) must navigate through a dense extracellular mucus to infect airway epithelial cells. The mucous layer, composed of glycosylated biopolymers (mucins), presents sialic acid that binds to ligands on the viral envelope and can be irreversibly cleaved by viral enzymes. It was recently discovered that filamentous IAVs exhibit directed persistent motion along their long axis on sialic acid-coated surfaces.
View Article and Find Full Text PDFSubcell Biochem
December 2024
Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
Viral genomes are transported between cells using various structural solutions such as spherical or filamentous protein cages, alone or in combination with lipid envelopes, in assemblies of varying complexity. Morphogenesis of the new infectious particles (virions) encompasses capsid assembly from individual components (proteins, and membranes when required), genome packaging, and maturation. This final step is crucial for full infectivity.
View Article and Find Full Text PDFLancet Glob Health
January 2025
Centre for Neonatal and Paediatric Infection and Vaccine Institute, City St George's, University of London, London, UK; Makerere University-Johns Hopkins University Research Collaboration, Kampala, Uganda; UK Health Security Agency, Salisbury, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!