Detailed in this communication is an efficient synthetic approach towards the guttiferone family of natural products. Oxidatively unraveling a para-quinone monoketal followed by consecutive 5-exo radical cyclizations provides the bicyclic core. An additional strength of this approach is a late stage asymmetric desymmetrization of an advanced symmetric intermediate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3107033PMC
http://dx.doi.org/10.1039/c0cc01419bDOI Listing

Publication Analysis

Top Keywords

natural products
8
efficient oxidative
4
oxidative dearomatization-radical
4
dearomatization-radical cyclization
4
cyclization approach
4
approach symmetrically
4
symmetrically substituted
4
substituted bicyclic
4
bicyclic guttiferone
4
guttiferone natural
4

Similar Publications

Disruptive multiple cell death pathways of bisphenol-A.

Toxicol Mech Methods

January 2025

Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India.

Endocrine-disrupting chemicals (EDCs) significantly contribute to health issues by interfering with hormonal functions. Bisphenol A (BPA), a prominent EDC, is extensively utilized as a monomer and plasticizer in producing polycarbonate plastic and epoxy resins, making it one of the highest-demanded chemicals in commercial use. This is the major component used in plastic products, including bottles, containers, storage items, and food serving ware.

View Article and Find Full Text PDF

Adjustment of Molecular Sorption Equilibrium on Catalyst Surface for Boosting Catalysis.

Acc Chem Res

January 2025

Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.

ConspectusFor chemical reactions with complex pathways, it is extremely difficult to adjust the catalytic performance. The previous strategies on this issue mainly focused on modifying the fine structures of the catalysts, including optimization of the geometric/electronic structure of the metal nanoparticles (NPs), regulation of the chemical composition/morphology of the supports, and/or adjustment of the metal-support interactions to modulate the reaction kinetics on the catalyst surface. Although significant advances have been achieved, the catalytic performance is still unsatisfactory.

View Article and Find Full Text PDF

Engineering Atom-Scale Cascade Catalysis via Multi-Active Site Collaboration for Ampere-Level CO Electroreduction to C Products.

Adv Mater

January 2025

International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, P. R. China.

Electrochemical reduction of CO to value-added multicarbon (C) productions offers an attractive route for renewable energy storage and CO utilization, but it remains challenging to achieve high C selectivity at industrial-level current density. Herein, a MoCu single-atom alloy (SAA) catalyst is reported that displays a remarkable C Faradaic efficiency of 86.4% under 0.

View Article and Find Full Text PDF

Background: Aspergillus niger is an important industrial filamentous fungus used to produce organic acids and enzymes. A wide dynamic range of promoters, particularly strong promoters, are required for fine-tuning the regulation of gene expression to balance metabolic flux and achieve the high yields of desired products. However, the limited understanding of promoter architectures and activities restricts the efficient transcription regulation of targets in strain engineering in A.

View Article and Find Full Text PDF

The expansion and loss of specific olfactory genes in relatives of parasitic lice, the stored-product psocids (Psocodea: Liposcelididae).

BMC Genomics

January 2025

Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China.

Background: Booklice, belonging to the genus Liposcelis (Psocodea: Liposcelididae), commonly known as psocids, infest a wide range of stored products and are implicated in the transmission of harmful microorganisms such as fungi and bacteria. The olfactory system is critical for insect feeding and reproduction. Elucidating the molecular mechanisms of the olfactory system in booklice is crucial for developing effective control strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!