Activation of the C-H bond of pyridine by [M(m)](-) (M = Cu, Ag, Au, m = 1-3) is investigated by experiment and theory. Complexes of coinage metal clusters and the pyridyl group, [M(m)-C(5)H(4)N](-), are produced from reactions between metal clusters formed by laser ablation of coinage metal samples and pyridine molecules seeded in argon carrier gas. We examine the structure and formation mechanism of these pyridyl-coinage metal complexes. Our study shows that C(5)H(4)N bonds to the metal clusters through a M-C sigma bond and [M(m)-C(5)H(4)N](-) is produced via a stepwise mechanism. The first step is a direct insertion reaction between [M(m)](-) and C(5)H(5)N with activation of the C-H bond to yield the intermediate [HM(m)-C(5)H(4)N](-). The second step is H atom abstraction by a neutral metal atom to yield [M(m)-C(5)H(4)N](-).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c002503h | DOI Listing |
Biochemistry
January 2025
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Mononuclear Fe enzymes such as heme-containing cytochrome P450 enzymes catalyze a variety of C-H activation reactions under ambient conditions, and they represent an attractive platform for engineering reactivity through changes to the native enzyme. Using density functional theory, we study both native Fe and non-native group 8 (Ru, Os) and group 9 (Ir) metal centers in an active site model of P450. We quantify how changing the metal changes spin state preferences throughout the catalytic cycle.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
Allylic ethers and alcohols are essential structural motifs commonly present in natural products and pharmaceuticals. Direct allylic C-H oxygenation of internal alkenes is one of the most direct methods, bypassing the necessity for an allylic leaving group that is needed in the traditional Tsuji-Trost reaction. Herein, we develop an efficient and practical method for synthesizing (E)-allyl ethers from readily available internal alkenes and alcohols or phenols via selective allylic C-H oxidation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
RIKEN: Rikagaku Kenkyujo, Center for Sustainable Resource Science, 2-1 Hirosawa, 351-0198, Wako, JAPAN.
Transition-metal-catalyzed selective and efficient activation of an inert C-H bond in an organic substrate is of importance for the development of streamlined synthetic methodologies. An attractive approach is the design of a metal catalyst capable of recognizing an organic substrate through noncovalent interactions to control reactivity and selectivity. We report here a spirobipyridine ligand that bears a hydroxy group that recognizes pyridine and quinoline substrates through hydrogen bonding, and in combination with an iridium catalyst enables site-selective C-H borylation.
View Article and Find Full Text PDFOrg Lett
January 2025
Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria.
The introduction of fluorine into organic molecules is of the utmost importance in the preparation of active pharmaceutical ingredients (APIs). While a wide range of fluorine sources for organic synthesis have been used over the past decades, the associated safety risks, cost, or environmental impact are still serious limitations. Hexafluorosilicate salts are one of the most inexpensive and readily available sources of nucleophilic fluorine, but they have so far not been used in organic synthesis.
View Article and Find Full Text PDFChem Sci
January 2025
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
Reported herein is the first example of a ruthenium-catalyzed C-H activation/annulation of phenothiazine-3-carbaldehydes to construct structurally diverse pyrido[3,4-]phenothiazin-3-iums with dual-emission characteristics. Novel organic single-molecule white-light materials based on pyrido[3,4-]phenothiazin-3-iums with dual-emission and thermally activated delayed fluorescence (TADF) characteristics have been developed for the first time herein. Furthermore, the dual-emission molecule could be fabricated as water-dispersed NPs, which could be applied in two-channel emission intensity ratio imaging to observe the intercellular structure and can specifically target the cell membrane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!