Tfb5 interacts with the Tfb2 subunit of the general transcription factor TFIIH to ensure efficient nucleotide-excision repair in eukaryotes. The crystal structure of the complex between Tfb5 and the C-terminal region of Tfb2 (Tfb2C) from Saccharomyces cerevisiae has recently been reported. Here, the structure-determination process is described as a case study. Although crystals were obtained readily, it was not possible to determine experimental phases from a first crystal form (Tfb2(412-513)-Tfb5(2-72)) that diffracted to 2.6 A resolution. Shortening of the Tfb2C from its N-terminus was decisive and modified the crystal packing, leading to a second crystal form (Tfb2(435-513)-Tfb5(2-72)). These crystals diffracted to 1.7 A resolution with excellent mosaicity and allowed structure determination by conventional approaches using heavy atoms. The refined structure from the second crystal form was used to solve the structure of the first crystal form by molecular replacement. Comparison of the two structures revealed that the N-terminal region of Tfb2C and (to a lesser extent) the C-terminal region of Tfb5 contributed to the crystal packing. A detailed analysis illustrates how variation in domain boundaries influences crystal packing and quality.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S0907444910009844DOI Listing

Publication Analysis

Top Keywords

crystal form
16
crystal packing
12
structure determination
8
complex tfb5
8
factor tfiih
8
crystal
8
c-terminal region
8
diffracted resolution
8
second crystal
8
structure
5

Similar Publications

Noncovalent carbon bonding (C-bonding), a recently explored σ-hole interaction, has primarily been characterized through X-ray structural and computational studies. Evidence of C-bonds in solution is scarce, especially in highly polar solvents like DMSO where solvation effects typically overshadow weak non-covalent interactions. In this work, we present three novel spiroisatin-based -acyl hydrazones (1-3) in which C-bonds play a critical role in stabilizing the conformation in solution.

View Article and Find Full Text PDF

Under extreme conditions, condensed matters are subject to undergo a phase transition and there have been many attempts to find another form of hydroxide stabilized over HO. Here, using Density Functional Theory (DFT)-based crystal structure prediction including zero-point energy, it is that proton superoxide (HO), the lightest superoxide, can be stabilized energetically at high pressure and temperature conditions. HO is metallic at high pressure, which originates from the 𝜋 orbitals overlap between adjacent superoxide anions (O ).

View Article and Find Full Text PDF

Activity waves in condensed excitable phases of Quincke rollers.

Soft Matter

January 2025

Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China.

Traveling waves are universal in excitable systems; yet, the microscopic dynamics of wave propagation is inaccessible in conventional excitable systems. Here, we show that active colloids of Quincke rollers driven by a periodic electric field can form condensed excitable phases. Distinct from existing excitable media, condensed excitable colloids can be tuned reversibly between active liquids and active crystals in which two distinct waves can be excited, respectively.

View Article and Find Full Text PDF

Tagging RNAs with fluorogenic aptamers has enabled imaging of transcripts in living cells, thereby revealing novel aspects of RNA metabolism and dynamics. While a diverse set of fluorogenic aptamers has been developed, a new generation of aptamers are beginning to exploit the ring-opening of spirocyclic rhodamine dyes to achieve robust performance in live mammalian cells. These fluorophores have two chemical states: a colorless, cell-permeable spirocyclic state and a fluorescent zwitterionic state.

View Article and Find Full Text PDF

Previous studies have identified three families of knotted phytochrome photoreceptors in cyanobacteria. We describe a fourth type: 'hybrid' phytochromes with putative bilin-binding cysteine residues in both their N-terminal 'knot' extensions and cGMP-phosphodiesterase/adenylate cyclase/FhlA (GAF) domains, which we designate as dual-cysteine bacteriophytochromes (DCBs). Recombinant expression of DCBs in Escherichia coli yields photoactive phycocyanobilin (PCB) adducts with red/far-red photocycles similar to those of the GAF-Cys-containing cyanobacterial phytochromes (Cph1s).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!