A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pax3 induces differentiation of juvenile skeletal muscle stem cells without transcriptional upregulation of canonical myogenic regulatory factors. | LitMetric

Pax3 is an essential myogenic regulator of fetal and embryonic development, but its role in postnatal myogenesis remains a topic of debate. We show that constitutive expression of Pax3 in postnatal, juvenile mouse skeletal muscle stem cells, a subset of the heterogeneous satellite cell pool highly enriched for myogenic activity, potently induces differentiation. This differentiation-promoting activity stands in contrast to the differentiation-inhibiting effects of Pax3 in the commonly used mouse myoblast cell line C2C12. Pax3 mRNA levels in distinct muscles correlate with the rate of myogenic differentiation of their muscle stem cells. Although Pax3 controls embryonic myogenesis through regulation of the canonical myogenic regulatory factors (MRFs) Myf-5, MyoD, myogenin and Mrf4, we find that in postnatal muscle stem cells, ectopic Pax3 expression fails to induce expression of any of these factors. Unexpectedly, overexpression of neither Myf-5 nor myogenin is sufficient to induce differentiation of juvenile stem cells; and knockdown of Myf-5, rather than inhibiting differentiation, promotes it. Taken together, our results suggest that there are distinct myogenic regulatory pathways that control the embryonic development, juvenile myogenesis and adult regeneration of skeletal myofibers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2908050PMC
http://dx.doi.org/10.1242/jcs.061606DOI Listing

Publication Analysis

Top Keywords

stem cells
20
muscle stem
16
myogenic regulatory
12
induces differentiation
8
differentiation juvenile
8
skeletal muscle
8
canonical myogenic
8
regulatory factors
8
embryonic development
8
pax3
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!