Background: Recent advances in left ventricular assist device (LVAD) technology have resulted in small, durable, energy-efficient, continuous-flow blood pumps that can support patients with end-stage heart failure. However, the effects of reduced or nonpulsatile flow on end-organ function are unclear. We performed a pilot study in calves with a continuous-flow LVAD to assess the effects of the pump's outflow-graft location (ascending versus descending aorta) on myocardial blood flow.
Materials And Methods: In 8 healthy calves, we implanted the Jarvik 2000 LVAD in the left ventricular apex without the use of cardiopulmonary bypass. We anastomosed the outflow graft to either the ascending aorta (group 1; n = 4) or the descending aorta (group 2; n = 4). Hemodynamic parameters, myocardial oxygen consumption, and regional myocardial blood flow (analyzed with colored microspheres) were assessed at baseline (pump off) and during pump operation at 8000, 10,000, and 12,000 rpm.
Results: No intergroup differences were found in the aortic pressure, heart rate, central venous pressure, pump-flow to total-cardiac-flow ratio, or blood flow in the left anterior descending and right posterior descending coronary arteries at increasing pump speeds. Neither myocardial oxygen consumption nor myocardial tissue perfusion differed significantly between the two groups.
Conclusions: Regardless of the outflow-graft location (ascending versus descending aorta), the continuous-flow LVAD unloaded the left ventricle and did not adversely affect myocardial perfusion in either the right or left ventricle. Owing to the small number of animals studied, however, the most we can conclude is that neither outflow-graft location appeared to be inferior to the other.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jss.2010.03.031 | DOI Listing |
J Med Internet Res
January 2025
Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
Background: Gastrointestinal bleeding (GIB) is a severe and potentially life-threatening complication in patients with acute myocardial infarction (AMI), significantly affecting prognosis during hospitalization. Early identification of high-risk patients is essential to reduce complications, improve outcomes, and guide clinical decision-making.
Objective: This study aimed to develop and validate a machine learning (ML)-based model for predicting in-hospital GIB in patients with AMI, identify key risk factors, and evaluate the clinical applicability of the model for risk stratification and decision support.
PLoS One
January 2025
School of Computer Science & Engineering (SCOPE), VIT-AP University, Amaravati, Andhra Pradesh, India.
Background: Heart muscle damage from myocardial infarction (MI) is brought on by insufficient blood flow. The leading cause of death for middle-aged and older people worldwide is myocardial infarction (MI), which is difficult to diagnose because it has no symptoms. Clinicians must evaluate electrocardiography (ECG) signals to diagnose MI, which is difficult and prone to observer bias.
View Article and Find Full Text PDFJ Basic Clin Physiol Pharmacol
January 2025
Department of Clinical Pharmacology, 29988 JIPMER , Pondicherry, India.
Objectives: Acute myocardial infarction is a critical medical condition that poses a significant risk to life. It is distinguished by the abrupt cessation of blood flow to a specific segment of the cardiac muscle. Acute myocardial infarction accounts for more than 15 % of global mortality annually.
View Article and Find Full Text PDFJ Cardiol Cases
January 2025
Department of Cardiology, The Jikei University School of Medicine, Tokyo, Japan.
Unlabelled: There are some reports of atrial screw-in lead perforation, but the entire lead body is rarely exposed outside the right atrium at an early stage of the procedure. A man in his 80s had undergone catheter ablation for atrial fibrillation (AF) and had recurrent AF and tachycardia-bradycardia syndrome with 8.8 s of sinus arrest, which caused presyncope.
View Article and Find Full Text PDFCardiovasc Revasc Med
January 2025
Department of Cardiovascular disease, Henry Ford, Detroit, MI, USA.
Introduction: Cardiogenic shock (CS) is marked by substantial morbidity and mortality. The two major CS etiologies include heart failure (HF) and acute myocardial infarction (AMI). The utilization trends of mechanical circulatory support (MCS) and their clinical outcomes are not well described.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!