Lysozymes contain a disproportionately large fraction of cationic residues, and are thereby attracted toward the negatively charged surface of bacterial targets. Importantly, this conserved biophysical property may inhibit lysozyme antibacterial function during acute and chronic infections. A mouse model of acute pulmonary Pseudomonas aeruginosa infection demonstrated that anionic biopolymers accumulate to high concentrations in the infected lung, and the presence of these species correlates with decreased endogenous lysozyme activity. To develop antibacterial enzymes designed specifically to be used as antimicrobial agents in the infected airway, the electrostatic potential of human lysozyme (hLYS) was remodeled by protein engineering. A novel, high-throughput screen was implemented to functionally interrogate combinatorial libraries of charge-engineered hLYS proteins, and variants with improved bactericidal activity were isolated and characterized in detail. These studies illustrate a general mechanism by which polyanions inhibit lysozyme function, and they are the first direct demonstration that decreasing hLYS's net cationic character improves its antibacterial activity in the presence of disease-associated biopolymers. In addition to avoiding electrostatic sequestration, at least one charge-engineered variant also kills bacteria more rapidly in the absence of inhibitory biopolymers; this observation supports a novel hypothesis that tuning the cellular affinity of peptidoglycan hydrolases may be a general strategy for improving kinetics of bacterial killing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2942966 | PMC |
http://dx.doi.org/10.1021/cb1001119 | DOI Listing |
Int J Nanomedicine
January 2025
Department of Microbiology, Chungbuk National University, Cheongju, Republic of Korea.
Purpose: Outer membrane vesicles (OMVs) derived from Gram-negative bacteria naturally serve as a heterologous nano-engineering platform, functioning as effective multi-use nanovesicles for diagnostics, vaccines, and treatments against pathogens. To apply refined OMVs for human theranostic applications, we developed naturally exposed receptor-binding domain (RBD) OMVs grafted with antigen 43 as a minimal modular system targeting angiotensin-converting enzyme 2 (ACE2).
Methods: We constructed -derived OMVs using the antigen 43 autotransporter system to display RBD referred to as viral mimetic Ag43β700_RBD OMVs.
Curr Microbiol
January 2025
Department of Nanotechnology Engineering, Abdullah Gul University, Kayseri, Türkiye.
Traditional Turkish fermented foods like boza, pickles, and tarhana are recognized for their nutritional and health benefits, yet the probiotic potential of lactic acid bacteria (LAB) strains isolated from them remains underexplored. Sixty-six LAB strains were isolated from fermented foods using bacterial morphology, Gram staining, and catalase activity. The isolates were differentiated at strain level by RAPD-PCR (Random Amplification of Polymorphic DNA-Polymerase Chain Reaction) and twenty-five strains were selected for further evaluation of acid and bile salt tolerance.
View Article and Find Full Text PDFJ Appl Microbiol
January 2025
Graduate School of Human Life and Ecology, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka 558-8585, Japan.
Aims: To investigate the effects of Lactococcus lactis subsp. lactis strains LL100933 and LL12007 on the host defense mechanisms of Caenorhabditis elegans against pathogenic infections and stressors.
Methods And Results: C.
Biomater Adv
January 2025
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Mexico. Electronic address:
Current hemodialysis treatments can cause adverse effects, many of which are linked to the membranes used in the process. These issues are being addressed through new materials and technologies, making it urgent to establish minimum guidelines for evaluating such membranes. This review proposes standardizing the biological tests and variables to evaluate the performance of new membranes, aiming to replicate hemodialysis conditions closely.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
Background Severe acute pancreatitis (SAP) manifests as a critical state marked by acute abdominal symptoms, often associated with intestinal barrier dysfunction, exacerbating SAP retroactively. Ganoderic acid A (GAA) demonstrates anti-inflammatory properties in various inflammatory disorders. Nonetheless, its potential therapeutic impact on SAP and the underlying mechanisms remain unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!