Scope: Thymol is a component of several plants with antimicrobial activity. Little is known about the effects of thymol on immune cells of the host. This study addressed the effects of thymol on dendritic cells (DCs), regulators of innate and adaptive immunity.

Methods And Results: Immunohistochemistry, Western blotting and fluorescence-activated cell sorting analysis were performed in bone marrow-derived DCs either from wild-type mice or from mice lacking acid sphingomyelinase (ASM⁻/⁻) treated and untreated for 24 h with thymol (2-100 μg/mL). Thymol treatment resulted in activation of ASM, stimulation of ceramide formation, downregulation of anti-apoptotic Bcl-2 and Bcl-xL proteins, activation of caspase 3 and caspase 8, DNA fragmentation as well as cell membrane scrambling. The effects were dependent on the presence of ASM and were lacking in ASM⁻/⁻ mice or in wild-type DCs treated with sphingomyelinase inhibitor amitriptyline.

Conclusion: Thymol triggers suicidal DC death, an effect mediated by and requiring activation of ASM.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mnfr.200900577DOI Listing

Publication Analysis

Top Keywords

effects thymol
8
activation asm
8
thymol
6
role acidic
4
acidic sphingomyelinase
4
sphingomyelinase thymol-mediated
4
thymol-mediated dendritic
4
dendritic cell
4
cell death
4
death scope
4

Similar Publications

This study introduces a novel approach to enhance the antibacterial properties of UIO-66 by incorporating both Thymol and ZnO nanoparticles within its framework which represents a significant advancement like exhibiting a synergistic antibacterial effect, providing a prolonged and controlled release, and mitigating cytotoxicity associated with the release of free ZnO nanoparticles by combining these two antimicrobial agents within a single, well-defined metal-organic framework. UIO-66 frameworks are investigated as carriers for the natural antimicrobial agent, Thymol, and ZnONPs offering a novel drug delivery system for antibacterial applications. Results demonstrated 132, 90, 184, and 223 nm sizes for UIO-66, ZnONPs, UIO-66 encapsulated Thymol, and UIO-66 encapsulated both Thymol and ZnONPs, respectively.

View Article and Find Full Text PDF

Synergistic antimicrobial efficacy of phage cocktails and essential oils against Escherichia coli.

Microb Pathog

January 2025

Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China; Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea. Electronic address:

This study was designed to evaluate the combined antimicrobial activity of selected phage cocktail (MS2+T7 phages) and essential oils (cinnamon, clove, oregano, and thymol) against Escherichia coli ATCC 15597. To select most effective phages, the lytic abilities of individual phages (MS2, phiX174, and T7) and their phage combinations were assessed using the phage spot test and plaque assay at various multiplicity of infections (MOIs) ranging from 0.01 to 100.

View Article and Find Full Text PDF

This study investigates the effect of 100 mg L thymol treatment on the quality of post-harvest peppers stored at 10 °C. The results showed that thymol treatment significantly reduced decay rate, reactive oxygen species (ROS) accumulation, and saturated fatty acid levels in peppers. Moreover, unsaturated fatty acids, non-enzymatic antioxidants, and antioxidant enzyme levels increased after treatment.

View Article and Find Full Text PDF

Bioactive compounds and organic acids are applied to a wide range of foods against different types of foodborne pathogens. In the present study, carvacrol and thymol (1000 mg/L) were applied in wine-based marinades, alone or in combination with them and in combination with tartaric acid, malic acid, ascorbic acid, citric acid, and acetic acid (in concentration 0.1% /), in chicken and beef fillets and their antimicrobial activity, antioxidant capacity, and pH were estimated during refrigerated storage.

View Article and Find Full Text PDF

Drug combination assays using Caenorhabditis elegans as a model system.

J Pharmacol Toxicol Methods

January 2025

Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, 8000 Bahía Blanca, Argentina.

The C. elegans drug combination assay evaluates the effects of drug combinations in the nematode Caenorhabditis elegans, serving as a valuable tool to assess the efficacy of pharmaceutical agents and natural compounds. Using C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!