After a fatal accident during the discharge of wood pellets at Helsingborg, emissions from pellets during marine transportation became a concern for the safe handling and storage of wood pellets. In this paper, a two-compartment model has been developed for the first time to predict the concentrations of CO, CO₂, CH₄, and O₂ inside the cargo ship and the time and rate of forced ventilation required before the safe entry into the stairway adjacent to the storage hatch. The hatch and stairway are treated as two perfectly mixed tanks. The gas exchange rate between these two rooms and the gas exchange rate with the atmosphere are fitted to satisfy a measured tracer final concentration of 33 p.p.m.v. in the stairway and an average final hatch to stairway CO, CO₂, and CH₄ concentration ratio of 1.62 based on measurement from five other hatch and stairway systems. The reaction kinetics obtained from a laboratory unit using a different batch of pellets, however, need to be scaled in order to bring the prediction to close agreement with onboard measured emission data at the end of voyage. Using the adjusted kinetic data, the model was able to predict the general trend of data recorded in the first 12.5 days of the voyage. Further validation, however, requires the data recorded over the whole journey. The model was applied to predict the effect of ocean temperature on the off-gas emissions and the buildup of concentrations in the hatch and stairway. For safe entry to the cargo ship, the current model predicted that a minimal ventilation rate of 4.4 hr⁻¹ is required for the stairway's CO concentration to lower to a safe concentration of 25 p.p.m.v. At 4.4 hr⁻¹, 10 min of ventilation time is required for the safe entry into the stairway studied.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/annhyg/meq049 | DOI Listing |
Ann Occup Hyg
October 2010
Clean Energy Research Centre, the University of British Columbia, Vancouver, BC, Canada.
After a fatal accident during the discharge of wood pellets at Helsingborg, emissions from pellets during marine transportation became a concern for the safe handling and storage of wood pellets. In this paper, a two-compartment model has been developed for the first time to predict the concentrations of CO, CO₂, CH₄, and O₂ inside the cargo ship and the time and rate of forced ventilation required before the safe entry into the stairway adjacent to the storage hatch. The hatch and stairway are treated as two perfectly mixed tanks.
View Article and Find Full Text PDFAnn Occup Hyg
November 2009
Department of Occupational and Environmental Medicine, Sundsvall Hospital, SE-857 41 Sundsvall, Sweden.
Several recent accidents with fatal outcomes occurring during discharge of logs and wood chips from ships in Swedish ports indicate the need to better understand the atmospheric conditions in holds and connecting stairways. The principal aim of the present study was to assess the air levels of oxygen and toxic gases in confined spaces following sea transportation of logs and wood chips. The focus of the study was the conditions in the stairways, as this was the location of the reported accidents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!