Neutrophil extracellular traps (NETs) represent a distinct mechanism to control and eliminate microbial infections. Our results show that conidia and germ tubes of the human pathogenic mold Aspergillus fumigatus are able to trigger the formation of NETs. Viable fungal cells are not essentially required for this host-pathogen interaction. Neutrophils engulf conidia and thereby inhibit their germination, a process that is independent of NETosis. In the experimental set-up used in this study neutrophils do not kill germ tubes, but reduce their polar growth and this inhibition depends on NETs as it can be overcome by the addition of DNase-1. The Zn(2+) chelator calprotectin is associated with the Aspergillus-induced NETs and addition of Zn(2+) abrogates the NET-mediated growth inhibition. In summary, our data provide evidence that NETs are not sufficient to kill A. fumigatus, but might be a valuable tool to confine infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micinf.2010.06.009DOI Listing

Publication Analysis

Top Keywords

pathogenic mold
8
mold aspergillus
8
aspergillus fumigatus
8
germ tubes
8
growth inhibition
8
nets
6
nets formed
4
formed human
4
human neutrophils
4
neutrophils inhibit
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!