While most secreted proteins contain defined signal peptides that direct their extracellular transport through the ER-Golgi pathway, nonclassical transport of leaderless peptides/proteins was first described 20 years ago and the mechanisms responsible for unconventional export of such proteins have been thoroughly reviewed. In addition to directed nonclassical secretion, a number of leaderless secreted proteins have been classified as damage-associated molecular-pattern (DAMP) molecules, which are nuclear or cytoplasmic proteins that, under necrotic or apoptotic conditions, are released outside the cell and function as proinflammatory signals. A strong association between persistent release of DAMPs, chronic inflammation, and the hypoxic tumor microenvironment has been proposed. Thus, protein localization and function can change fundamentally from intracellular to extracellular compartments, often under conditions of inflammation, cancer, and arthritis. If we are truly to understand, model, and treat such biological states, it will be important to investigate these multifunctional proteins and their contribution to degenerative diseases. Here, we will focus our discussion on intracellular proteins, both cytoplasmic and nuclear, that play critical extracellular roles. In particular, the multifunctional nature of HMMR/RHAMM and survivin will be highlighted and compared, as these molecules are the subject of extensive biological and therapeutic investigations within hematology and oncology fields. For these and other genes/proteins, we will highlight points of structural and functional intersection during cellular division and differentiation, as well as states associated with cancer, such as tumor-initiation and epithelial-to-mesenchymal transition (EMT). Finally, we will discuss the potential targeting of these proteins for improved therapeutic outcomes within these degenerative disorders. Our goal is to highlight a number of commonalities among these multifunctional proteins for better understanding of their putative roles in tumor initiation, inflammation, arthritis, and cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763930 | PMC |
http://dx.doi.org/10.1100/tsw.2010.141 | DOI Listing |
Nat Commun
January 2025
Department of Chemistry, Boston College, Chestnut Hill, MA, USA.
Recent advances in gene editing and precise regulation of gene expression based on CRISPR technologies have provided powerful tools for the understanding and manipulation of gene functions. Fusing RNA aptamers to the sgRNA of CRISPR can recruit cognate RNA-binding protein (RBP) effectors to target genomic sites, and the expression of sgRNA containing different RNA aptamers permit simultaneous multiplexed and multifunctional gene regulations. Here, we report an intracellular directed evolution platform for RNA aptamers against intracellularly expressed RBPs.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India. Electronic address:
Microwave-assisted extraction conditions were optimized using response surface methodology to evaluate the effects of extraction parameters on the yield and carbohydrate content of Luffa aegyptiaca mucilage. Extraction at 540 W for 2 min with a 1:20 (g/mL) was determined as the optimal parameter, resulting in a maximum yield of 5.90 % (w/w) with 63 % carbohydrate content consisting of glucose, galactose, maltose, mannose, and galacturonic acid, with structural linkages of β (1 → 4) and β (1 → 6) glycosidic bonds.
View Article and Find Full Text PDFActa Biomater
January 2025
The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China.
Natural materials are valued for their lightweight properties, high strength, impact resistance, and fracture toughness, often outperforming human-made materials. This paper reviews recent research on biomimetic composites, focusing on how composition, microstructure, and interfacial characteristics affect mechanical properties like strength, stiffness, and toughness. It explores biological structures such as mollusk shells, bones, and insect exoskeletons that inspire lightweight designs, including honeycomb structures for weight reduction and impact resistance.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China. Electronic address:
Herein, we developed multifunctional hydrogels formed between soybean protein (SPI)-gallic acid conjugate and oxidized dextran (ODex) via a Schiff base reaction. The effects of ODex on the morphology, structure, and functional properties of the hydrogels were elucidated. The results showed that the crosslinking modes in the hydrogels include hydrogen bonding, Schiff bases, Michael addition, and π-π stacking.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!