Optical and electrical properties of polyelectrolyte/iron oxide nanocomposite planar films on silicon substrates were investigated for different amount of iron oxide nanoparticles incorporated in the films. The nanocomposite assemblies prepared by the layer-by-layer assembly technique were characterized by ellipsometry, atomic force microscopy, and secondary ion mass-spectrometry. Absorption spectra of the films reveal a shift of the optical absorption edge to higher energy when the number of deposited layers decreases. Capacitance-voltage and current-voltage measurements were applied to study the electrical properties of metal-oxide-semiconductor structures prepared by thermal evaporation of gold electrodes on nanocomposite films. The capacitance-voltage measurements show that the dielectric constant of the film increases with the number of deposited layers and the fixed charge and the trapped charge densities have a negative sign.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c004242k | DOI Listing |
Biophys J
January 2025
Department of Biology, New York University, New York, New York, 10003, USA. Electronic address:
The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Khalifa University, Abu Dhabi, United Arab Emirates.
The current research aims to determine the impact of orange peel dye (OPD), an eco-friendly addition, on the optical properties of biodegradable polymers. This study investigates the enhancement of optical properties in solid electrolytes based on chitosan (CS) and glycerol, with varying OPD concentrations. UV-Vis-NIR spectroscopy revealed significantly enhanced UV-visible light absorption in the 200-500 nm region and effective UV light blocking.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:
Background: Estriol (E3) is a common estrogen responsible for regulating the female reproductive system, but excessive amount can pose health risks to humans and wild life. Therefore, sensitive and accurate detection of estriol level is crucial. A novel competitive ECL immunosensor based on a dual signal amplification strategy of AuNPs@GO@SmMoSe and Gd(MoO) was fabricated for ultrasensitive detection of estriol.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China. Electronic address:
The ternary complex effectively prevents droplet aggregation, Ostwald ripening, and phase separation through its gel network, thereby demonstrating its capability in bioactive compound delivery. In this work, the influence of varying chickpea protein isolate (CPI) levels on the microstructure, gel characteristics, stability and functional properties of grape seed proanthocyanidin (GSP) and konjac gum (KGM) stabilized ternary complexes was investigated. Visual appearance indicated the formation of a non-stratified ternary complex as the CPI enhanced to 3-4 %.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China. Electronic address:
The electrical conductivity and antibacterial properties are crucial characteristics for bacterial cellulose (BC) based membranes to be broadly applied in the field of wearable electronics. In the study, to achieve these aims, alpha-lipoic acid (LA) was utilized as anchoring groups and reducing agent, hydroxypropyl-β-cyclodextrin (HP-β-CD) capped magnetic particles (FeO NPs) and the in-situ formed silver nanoparticles (AgNPs) were sequentially incorporated into the BC matrix to fabricate BC based nanocomposite membranes (HP-β-CD/FeO/LA@BC and HP-β-CD/FeO/LA/Ag@BC). Fourier transform attenuated total reflectance infrared spectroscopy (FTIR-ATR) and field emission scanning electron microscopy (FE-SEM) analysis proved the dense networks were formed in the modified BC membranes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!