Herein, we study the nanomechanical characteristics of single DNA molecules in the presence of DNA binders, including intercalating agents (ethidium bromide and doxorubicin), a minor groove binder (netropsin) and a typical alkylating damaging agent (cisplatin). We have used magnetic tweezers manipulation techniques, which allow us to measure the contour and persistence lengths together with the bending and torsional properties of DNA. For each drug, the specific variations of the nanomechanical properties induced in the DNA have been compared. We observed that the presence of drugs causes a specific variation in the DNA extension, a shift in the natural twist and a modification of bending dependence on the imposed twist. By introducing a naive model, we have justified an anomalous correlation of torsion data observed in the presence of intercalators. Finally, a data analysis criterion for discriminating between different molecular interactions among DNA and drugs has been suggested.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978368 | PMC |
http://dx.doi.org/10.1093/nar/gkq597 | DOI Listing |
Biophys J
January 2025
Department of Chemical Engineering, Columbia University, New York, NY 10027. Electronic address:
Membrane fusion is central to fundamental cellular processes such as exocytosis, when an intracellular machinery fuses membrane-enclosed vesicles to the plasma membrane for contents release. The core machinery components are the SNARE proteins. SNARE complexation pulls the membranes together, but the fusion mechanism remains unclear.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India.
Single-point mutations are pivotal in molecular zoology, shaping functions and influencing genetic diversity and evolution. Here we study three such genetic variants of a mechano-responsive protein, cadherin-23, that uphold the structural integrity of the protein, but showcase distinct genotypes and phenotypes. The variants exhibit subtle differences in transient intra-domain interactions, which in turn affect the anti-correlated motions among the constituent β-strands.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Mechatronics Engineering Department, Istanbul Ticaret University, 34854 Maltepe, Turkey.
An automated micro-tweezers system with a flexible workspace would benefit the intelligent sorting of live cells. Such micro-tweezers could employ a forced vortex strong enough to capture a single cell. Furthermore, addressable control of the position to the vortex would constitute a robotic system.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
January 2025
Department of Science, Yokohama City University, Yokohama, Japan.
Not only for man-made architecture but also for living cells, the relationship between force and structure is a fundamental properties that governs their mechanical behaviors. However, our knowledge of the mechanical properties of intracellular structures is very limited because of the lack of direct measurement methods. We established high-force intracellular magnetic tweezers that can generate calibrated forces up to 10 nN, enabling direct force measurements of the cytoskeleton.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
Coronaviruses (CoV) encode sixteen non-structural proteins (nsps), most of which form the replication-transcription complex (RTC). The RTC contains a core composed of one nsp12 RNA-dependent RNA polymerase (RdRp), two nsp8s and one nsp7. The core RTC recruits other nsps to synthesize all viral RNAs within the infected cell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!