A diverse soil microbial community is involved in nitrogen cycling, and these microbes can be affected by land management practices and weed invasion. We surveyed 20 woodlands with a history of livestock grazing, with livestock recently excluded from 10 sites. We investigated whether soil nutrients were lower when grazing was excluded and higher when exotic grasses dominated the understory. Second, using quantitative real-time PCR, we investigated whether microbial nitrogen functional gene (NFG) abundance was altered with soil nutrient enrichment, livestock exclusion, and exotic grass invasion. The target genes were chiA (decomposition-ammonification), nifH (nitrogen fixation), nirK and narG (denitrification), and bacterial amoA (nitrification). Woodland soils were enriched in phosphorus and nitrogen compared to reference condition sites, but soil nutrients were not lower following livestock exclusion. Total nitrogen and nifH were negatively correlated in grazed woodlands, suggesting that aboveground herbivory reduces the capacity for belowground nitrogen fixation. Woodlands dominated by exotic grasses had higher levels of nitrate, narG, and nirK than those dominated by native grasses. We hypothesize that the increase in potential for denitrification was due to increases in soil nitrate, rather than changes in plant composition. Overall, soil physicochemistry explained more variation in NFG abundance than livestock presence or plant invasion, particularly for chiA and bacterial amoA, with significant relationships between the abundance of all five NFGs and total nitrogen or nitrate. All woodlands investigated had a history of anthropogenic disturbance and nutrification, and soil nutrient levels and the abundance of NFGs are likely to be related to long-term land management practices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2918952PMC
http://dx.doi.org/10.1128/AEM.03054-09DOI Listing

Publication Analysis

Top Keywords

soil nutrient
12
livestock exclusion
12
soil
8
nutrient enrichment
8
weed invasion
8
land management
8
management practices
8
soil nutrients
8
nutrients lower
8
exotic grasses
8

Similar Publications

The use of biological control agents is one of the best strategies available to combat the plant diseases in an ecofriendly manner. Biocontrol bacteria capable of providing beneficial effect in crop plant growth and health, have been developed for several decades. It highlights the need for a deeper understanding of the colonization mechanisms employed by biocontrol bacteria to enhance their efficacy in plant pathogen control.

View Article and Find Full Text PDF

A Study of the Different Strains of the Genus spp. on Increasing Productivity and Stress Resilience in Plants.

Plants (Basel)

January 2025

National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China.

One of the most important and essential components of sustainable agricultural production is biostimulants, which are emerging as a notable alternative of chemical-based products to mitigate soil contamination and environmental hazards. The most important modes of action of bacterial plant biostimulants on different plants are increasing disease resistance; activation of genes; production of chelating agents and organic acids; boosting quality through metabolome modulation; affecting the biosynthesis of phytochemicals; coordinating the activity of antioxidants and antioxidant enzymes; synthesis and accumulation of anthocyanins, vitamin C, and polyphenols; enhancing abiotic stress through cytokinin and abscisic acid (ABA) production; upregulation of stress-related genes; and the production of exopolysaccharides, secondary metabolites, and ACC deaminase. is a free-living bacterial genus which can promote the yield and growth of many species, with multiple modes of action which can vary on the basis of different climate and soil conditions.

View Article and Find Full Text PDF

Impact of Polystyrene Microplastics on Soil Properties, Microbial Diversity and L. Growth in Meadow Soils.

Plants (Basel)

January 2025

Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China.

The pervasive presence of microplastics (MPs) in agroecosystems poses a significant threat to soil health and plant growth. This study investigates the effects of varying concentrations and sizes of polystyrene microplastics (PS-MPs) on the L.'s height, dry weight, antioxidant enzyme activities, soil physicochemical properties, and rhizosphere microbial communities.

View Article and Find Full Text PDF

The incorporation of rice straw (RS) and Chinese milk vetch (CMV) with reduced chemical fertilizers (CFs) is a viable solution to reduce the dependency on CF. However, limited research has been conducted to investigate the impact of CMV and RS with reduced CF on rice production. A field trial was conducted from 2018 to 2021 with six treatments: CK (no fertilizer), F100 (100% NPK fertilizer (CF)), MSF100 (100% CF+CMV and RS incorporation), MSF80 (80% CF+CMV+RS), MSF60 (60% CF+CMV+RS), and MSF40 (40% CF+CMV+RS).

View Article and Find Full Text PDF

There is a growing need for sustainable, efficient methods to promote plant growth and protect crops, with plant extracts offering natural, multi-component solutions. Based on previous observations, , , and were selected from 17 water extracts to investigate how the application times of soil sprays affect the antioxidant enzymes and secondary metabolites in fruity and leafy vegetables at different growth stages. From 1 week after sowing (WAS) to 4 WAS, all applications increased the shoot fresh weight by 42-69% in cucumbers, 40-64% in tomatoes, 46-65% in kale and 42-63% in lettuce.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!