Natural transformation is the main means of horizontal genetic exchange in the obligate human pathogen Neisseria gonorrhoeae. Neisseria spp. have been shown to preferentially take up and transform their own DNA by recognizing the nonpalindromic 10- or 12-nucleotide sequence 5'-ATGCCGTCTGAA-3' (additional semiconserved nucleotides are underlined), termed the DNA uptake sequence (DUS10 or DUS12). Here we investigated the effects of the DUS on transformation and DNA uptake for several laboratory strains of N. gonorrhoeae. We found that all strains showed efficient transformation of DUS containing DNA (DUS10 and DUS12) but that the level of transformation with DNA lacking a DUS (DUS0) was variable in different strains. The DUS-enhanced transformation was 20-fold in two strains, FA1090 and FA19, but was approximately 150-fold in strains MS11 and 1291. All strains tested provide some level of DUS0 transformation, and DUS0 transformation was type IV pilus dependent. Competition with plasmid DNA revealed that transformation of MS11 was enhanced by the addition of excess plasmid DNA containing a DUS while FA1090 transformation was competitively inhibited. Although FA1090 was able to mediate much more efficient transformation of DNA lacking a DUS than was MS11, DNA uptake experiments showed similar levels of uptake of DNA containing and lacking a DUS in FA1090 and MS11. Finally, DNA uptake was competitively inhibited in both FA1090 and MS11. Taken together, our data indicate that the role of the DUS during DNA transformation is variable between strains of N. gonorrhoeae and may influence multiple steps during transformation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2937394 | PMC |
http://dx.doi.org/10.1128/JB.00442-10 | DOI Listing |
Sample multiplexing is an emerging method in single-cell RNA sequencing (scRNA-seq) that addresses high costs and batch effects. Current multiplexing schemes use DNA labels to barcode cell samples but are limited in their stability and extent of labeling across heterogeneous cell populations. Here, we introduce Nanocoding using lipid nanoparticles (LNPs) for high barcode labeling density in multiplexed scRNA-seq.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand.
The accumulation of oxidized low-density lipoprotein (oxLDL) in macrophages leads to the formation of foam cells and atherosclerosis development. Reducing the uptake of oxLDL in macrophages decreases the incidence and progression of atherosclerosis. Four distinct single-strand DNA sequences, namely, AP07, AP11, AP25, and AP29, were selected that demonstrated specific binding to distinct regions of oxidized apolipoprotein B100 (apoB100; the protein component of oxLDL) with low HDOCK scores.
View Article and Find Full Text PDFGenes Dis
March 2025
College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
Orthodontic tooth movement (OTM) depends on periodontal ligament cells (PDLCs), which sense biomechanical stimuli and initiate alveolar bone remodeling. Light (optimal) forces accelerate OTM, whereas heavy forces decelerate it. However, the mechanisms by which PDLCs sense biomechanical stimuli and affect osteoclastic activities under different mechanical forces (MFs) remain unclear.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Biomedical Engineering, University of Toronto, Toronto M5S 2E3, Canada.
Immune complexes (ICs), formed via antibody (Ab)-antigen (Ag) binding, trigger diverse immune responses, which are critical for natural immunity and have uses for vaccines and immunotherapies. While IC-elicited immune responses depend on its structure, existing methods for IC synthesis produce heterogeneous assemblies, which limits control over their cellular interactions and pharmacokinetics. In this study, we demonstrate the use of DNA origami to create synthetic ICs with defined shape, size, and solubility by displaying Ags in prescribed spatial patterns.
View Article and Find Full Text PDFSci Adv
January 2025
Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!