Small noncoding regulatory RNAs (sRNAs) play a key role in the posttranscriptional regulation of many bacterial genes. The genome of Caulobacter crescentus encodes at least 31 sRNAs, and 27 of these sRNAs are of unknown function. An overexpression screen for sRNA-induced growth inhibition along with sequence conservation in a related Caulobacter species led to the identification of a novel sRNA, CrfA, that is specifically induced upon carbon starvation. Twenty-seven genes were found to be strongly activated by CrfA accumulation. One-third of these target genes encode putative TonB-dependent receptors, suggesting CrfA plays a role in the surface modification of C. crescentus, facilitating the uptake of nutrients during periods of carbon starvation. The mechanism of CrfA-mediated gene activation was investigated for one of the genes predicted to encode a TonB-dependent receptor, CC3461. CrfA functions to stabilize the CC3461 transcript. Complementarity between a region of CrfA and the terminal region of the CC3461 5'-untranslated region (5'-UTR) and also the behavior of a deletion of this region and a site-specific base substitution and a 3-base deletion in the CrfA complementary sequence suggest that CrfA binds to a stem-loop structure upstream of the CC3461 Shine-Dalgarno sequence and stabilizes the transcript.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2937403 | PMC |
http://dx.doi.org/10.1128/JB.00343-10 | DOI Listing |
Nat Chem Biol
January 2025
Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
Colony expansion is important for establishing territories. It is unclear to what extent bacteria can maintain colony expansion under nutrient limitation. Here, we found that Escherichia coli biofilms could maintain steady expansion for an extended period of time under severe phosphorus limitation.
View Article and Find Full Text PDFmSystems
December 2024
Department of Bioengineering, University of California, San Diego, California, USA.
Unlabelled: The composition of bacterial transcriptomes is determined by the transcriptional regulatory network (TRN). The TRN regulates the transition from one physiological state to another. Here, we use independent component analysis to monitor the composition of the transcriptome during the transition from the exponential growth phase to the stationary phase.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China. Electronic address:
Developing near-infrared fluorescent probes for simultaneous tracking of lipid droplets (LDs) and lysosomes is highly desirable for studying cell metabolism. In this work, deep-red/near-infrared dual-emission carbonized polymer dots (DN-CPDs) were prepared for ratiometric monitoring of the intracellular polarity. Detailed structural analysis revealed that the deep-red emission and near-infrared peak of DN-CPDs originate from the molecular state and surface state, respectively.
View Article and Find Full Text PDFBMC Cancer
December 2024
Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, 475004, China.
Background: Serine/glycine are critical for the growth and survival of cancer cells. Some cancer cells are more dependent on exogenous serine/glycine than endogenously synthesized serine/glycine. However, the function and underlying mechanisms of exogenous serine/glycine in renal cell carcinoma (RCC) remain unclear.
View Article and Find Full Text PDFPlant J
December 2024
Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
Energy is required for growth as well as for multiple cellular processes. During evolution, plants developed regulatory mechanisms to adapt energy consumption to metabolic reserves and cellular needs. Reduced growth is often observed under stress, leading to a growth-stress trade-off that governs plant performance under different conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!