Gene targeting by single-stranded oligodeoxyribonucleotides (ssODNs) is a promising tool for site-specific gene modification in mouse embryonic stem cells (ESCs). We have developed an ESC line carrying a mutant EGFP reporter gene to monitor gene correction events shortly after exposure to ssODNs. We used this system to compare the appearance and fate of cells corrected by sense or anti-sense ssODNs. The slower appearance of green fluorescent cells with sense ssODNs as compared to anti-sense ssODNs is consistent with physical incorporation of the ssODN into the genome. Thus, the supremacy of anti-sense ssODNs, previously reported by others, may be an artefact of early readout of the EGFP reporter. Importantly, gene correction by unmodified ssODNs only mildly affected the viability of targeted cells and did not induce genomic DNA double-stranded breaks (DSBs). In contrast, ssODNs that were end-protected by phosphorothioate (PTO) linkages caused increased H2AX phosphorylation and impaired cell cycle progression in both corrected and non-corrected cells due to induction of genomic DSBs. Our results demonstrate that the use of unmodified rather than PTO end-protected ssODNs allows stable gene modification without compromising the genomic integrity of the cell, which is crucial for application of ssODN-mediated gene targeting in (embryonic) stem cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978364 | PMC |
http://dx.doi.org/10.1093/nar/gkq589 | DOI Listing |
Plant Cell Physiol
January 2025
Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011 Kyoto, Japan.
Lotus japonicus-ROOT HAIR LESS1-LIKE1 (LRL1) of Arabidopsis thaliana encodes a basic helix-loop-helix (bHLH) transcription factor (TF) involved in root hair development. Root hair development is regulated by an elaborate transcriptional network, in which GLABRA2 (GL2), a key negative regulator, directly represses bHLH TF genes, including LRL1 and ROOT HAIR DEFECTIVE6 (RHD6). Although RHD6 and its paralogous TFs have been shown to connect downstream to genes involved in cell morphological events such as endomembrane and cell wall modification, the network downstream of LRL1 remains elusive.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.
Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.
View Article and Find Full Text PDFHaemophilia
January 2025
Medicine and Pathology, Georgetown University, Washington, District of Columbia, USA.
Introduction: Gene editing therapies offer the possibility of substantial improvement in treatment and quality of life for people with haemophilia (PWH) in a landscape of dynamic therapeutic advancement. Developing a common and understandable language to discuss gene editing will be essential to ensure these treatments can be deployed in a safe and effective manner with fully informed and shared decision-making between healthcare professionals (HCPs) and PWH. A lexicon explaining and clarifying key concepts is one potential tool to address these aims.
View Article and Find Full Text PDFJ Viral Hepat
February 2025
Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China.
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Hepatitis B virus (HBV) is the main pathogen for HCC development. HBV covalently closed circular DNA (cccDNA) forms extra-host chromatin-like minichromosomes in the nucleus of hepatocytes with host histones, non-histones, HBV X protein (HBx) and HBV core protein (HBc).
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.
Accumulating research indicates that N6-methyladenosine (m6A) modification plays a pivotal role in colorectal cancer (CRC). Hence, investigating the m6A-related long noncoding RNAs (lncRNAs) significantly improves therapeutic strategies and prognostic assessments. This study aimed to develop and validate a prognostic model based on m6A-related lncRNAs to improve the prediction of clinical outcomes and identify potential immunological mechanisms in CRC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!