We present a novel route for producing a new class of titanium foams for use in biomedical implant applications. These foams are hierarchically porous, with both the traditional large (>300μm) highly interconnected pores and, uniquely, wall struts also containing micron scale (0.5-5μm) interconnected porosities. The fabrication method consists of first producing a porous oxide precursor via a gel casting method, followed by electrochemical reduction to produce a metallic foam. This method offers the unique ability to tailor the porosity at several scales independently, unlike traditional space-holder techniques. Reducing the pressure during foam setting increased the macro-pore size. The intra-strut pore size (and percentage) can be controlled independently of macro-pore size by altering the ceramic loading and sintering temperature during precursor production. Typical properties for an 80% porous Ti foam were a modulus of ∼1GPa, a yield strength of 8MPa and a permeability of 350 Darcies, all of which are in the range required for biomedical implant applications. We also demonstrate that the micron scale intra-strut porosities can be exploited to allow infiltration of bioactive materials using a novel bioactive silica-polymer composite, resulting in a metal-bioactive silica-polymer composite.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2010.06.027DOI Listing

Publication Analysis

Top Keywords

titanium foams
8
biomedical implant
8
implant applications
8
micron scale
8
macro-pore size
8
silica-polymer composite
8
hierarchically structured
4
structured titanium
4
foams tissue
4
tissue scaffold
4

Similar Publications

This study presents the development of a novel piezoelectric scaffold for bone tissue engineering composed of poly(ε-caprolactone) (PCL), thermoplastic polyurethane (TPU), barium titanate (BT), and cellulose nanocrystals (CNC). PCL and TPU are considered advantageous materials because of their ease of processing, versatility in design, and ability to degrade over time; however, their inherent immiscibility poses challenges to achieving optimal porous structures. In this study, porous scaffolds were produced using gas foaming and salt leaching techniques, resulting in highly porous interconnected scaffolds exhibiting considerable elasticity that is suitable for dynamic cell culture while avoiding the use of toxic solvents.

View Article and Find Full Text PDF

Primary Stability of Zirconia Dental Implants with Cylindrical and Tapered Designs Across Varying Bone Densities: An In Vitro Evaluation.

Dent J (Basel)

November 2024

Department of Oral Surgery and Oral Medicine, Faculdade de Medicina Dentária da Universidade de Lisboa, 1600-277 Lisbon, Portugal.

While titanium implants are widely recognized for their clinical success, zirconia implants have emerged as a metal-free alternative. This study aimed to evaluate the influence of zirconia implant macrogeometry and bone density on primary implant stability. Two types of zirconia implants were tested-the Neodent Zi Ceramic Implant and the Straumann PURE Ceramic Implant, that were placed into polyurethane foam blocks mimicking different bone densities (10 PCF, 15 PCF, 20 PCF, 30 PCF, and 40 PCF).

View Article and Find Full Text PDF

This study introduces the first fabrication of porous titanium/hydroxyapatite interpenetrating phase composites through an innovative processing method. The approach combines additive manufacturing of a customized titanium skeleton with the infiltration of an injectable hydroxyapatite foam, followed by in situ foam hardening at physiological temperature. This biomimetic process circumvents ceramic sintering and metal casting, effectively avoiding the formation of secondary phases that can impair mechanical performance.

View Article and Find Full Text PDF

Comminuted proximal humerus fractures are often repaired by metal plates, but potentially still experience bone refracture, bone "stress shielding," screw perforation, delayed healing, and so forth. This "proof of principle" investigation is the initial step towards the design of a new plate using alternative materials to address some of these problems. Finite element modeling was used to create design graphs for bone stress, plate stress, screw stress, and interfragmentary motion via three different fixations (no, 1, or 2 "kickstand" [KS] screws across the fracture) using a wide range of plate elastic moduli (E = 5-200 GPa).

View Article and Find Full Text PDF

Composite materials made from aluminum foam are increasingly used in aerospace and automotive industries due to their low density, high energy absorption capacity, and corrosion resistance. Additive manufacturing processes offer several advantages over conventional manufacturing methods, such as the ability to produce significantly more geometrically complex components without the need for expensive tooling. Direct Energy Deposition processes like Wire Arc Additive Manufacturing (WAAM) enable the additive production of near-net-shape components at high build rates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!