Engineering DYRK1A overdosage yields Down syndrome-characteristic cortical splicing aberrations.

Neurobiol Dis

Department of Biological Chemistry and Interdisciplinary Center for Neuronal Computation (ICNC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

Published: October 2010

Down syndrome (DS) associates with impaired brain functions, but the underlying mechanism(s) are yet unclear. The "gene dosage" hypothesis predicts that in DS, overexpression of a single gene can impair multiple brain functions through a signal amplification effect due to impaired regulatory mechanism(s). Here, we report findings attributing to impairments in the splicing process such a regulatory role. We have used DS fetal brain samples in search for initial evidence and employed engineered mice with MMU16 partial trisomy (Ts65Dn) or direct excess of the splicing-associated nuclear kinase Dyrk1A, overdosed in DS for further analyses. We present specific albeit modest changes in the DS brain's splicing machinery with subsequently amplified effects in target transcripts; and we demonstrate that engineered excess of Dyrk1A can largely recapitulate these changes. Specifically, in both the fetal DS brains and the Dyrk1A overdose models, we found ample modestly modified splicing-associated transcripts which apparently induced secondary enhancement in exon inclusion of key synaptic transcripts. Thus, DS-reduced levels of the dominant-negative TRKBT1 transcript, but not other TRKB mRNA transcripts, were accompanied by corresponding decreases in BDNF. In addition, the DS brains and Dyrk1A overdosage models showed selective changes in the transcripts composition of neuroligin mRNAs as well as reductions in the "synaptic" acetylcholinesterase variant AChE-S mRNA and corresponding increases in the stress-inducible AChE-R mRNA variant, yielding key synaptic proteins with unusual features. In cotransfected cells, Dyrk1A overdosage caused parallel changes in the splicing pattern of an AChE mini-gene, suggesting that Dyrk1A overdosage is both essential and sufficient to induce the observed change in the composition of AChE mRNA variants. Furthermore, the Dyrk1A overdosage animal models showed pronounced changes in the structure of neuronal nuclear speckles, where splicing events take place and in SR proteins phosphorylation known to be required for the splicing process. Together, our findings demonstrate DS-like brain splicing machinery malfunctioning in Dyrk1A overexpressing mice. Since individual splicing choices may alter cell fate determination, axon guidance, and synaptogenesis, these findings suggest the retrieval of balanced splicing as a goal for DS therapeutic manipulations early in DS development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2010.06.011DOI Listing

Publication Analysis

Top Keywords

dyrk1a overdosage
20
splicing
9
brain functions
8
splicing process
8
dyrk1a
8
splicing machinery
8
brains dyrk1a
8
key synaptic
8
overdosage
5
changes
5

Similar Publications

from Gene Function in Development and Physiology to Dosage Correction across Life Span in Down Syndrome.

Genes (Basel)

November 2021

Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France.

Down syndrome is the main cause of intellectual disabilities with a large set of comorbidities from developmental origins but also that appeared across life span. Investigation of the genetic overdosage found in Down syndrome, due to the trisomy of human chromosome 21, has pointed to one main driver gene, the Dyrk1a is a murine homolog of the drosophila gene. It has been found to be involved in many biological processes during development and in adulthood.

View Article and Find Full Text PDF

Identifying dosage-sensitive genes is a key to understand the mechanisms underlying intellectual disability in Down syndrome (DS). The Dp(17Abcg1-Cbs)1Yah DS mouse model (Dp1Yah) shows cognitive phenotypes that need to be investigated to identify the main genetic driver. Here, we report that three copies of the cystathionine-beta-synthase gene (Cbs) in the Dp1Yah mice are necessary to observe a deficit in the novel object recognition (NOR) paradigm.

View Article and Find Full Text PDF

Environmental enrichment rescues DYRK1A activity and hippocampal adult neurogenesis in TgDyrk1A.

Neurobiol Dis

December 2013

Systems Biology Program, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, E-08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, E-08003 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Dr. Aiguader 88, E-08003 Barcelona, Spain.

Hippocampal adult neurogenesis disruptions have been suggested as one of the neuronal plasticity mechanisms underlying learning and memory impairment in Down syndrome (DS). However, it remains unknown whether specific candidate genes are implicated in these phenotypes in the multifactorial context of DS. Here we report that transgenic mice (TgDyrk1A) with overdosage of Dyrk1A, a DS candidate gene, show important alterations in adult neurogenesis including reduced cell proliferation rate, altered cell cycle progression and reduced cell cycle exit leading to premature migration, differentiation and reduced survival of newly born cells.

View Article and Find Full Text PDF

Engineering DYRK1A overdosage yields Down syndrome-characteristic cortical splicing aberrations.

Neurobiol Dis

October 2010

Department of Biological Chemistry and Interdisciplinary Center for Neuronal Computation (ICNC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

Down syndrome (DS) associates with impaired brain functions, but the underlying mechanism(s) are yet unclear. The "gene dosage" hypothesis predicts that in DS, overexpression of a single gene can impair multiple brain functions through a signal amplification effect due to impaired regulatory mechanism(s). Here, we report findings attributing to impairments in the splicing process such a regulatory role.

View Article and Find Full Text PDF

Mental retardation and associated neurological dysfunctions in Down syndrome: a consequence of dysregulation in critical chromosome 21 genes and associated molecular pathways.

Eur J Paediatr Neurol

May 2008

Laboratory of Genetic Dysregulation Models: Trisomy 21 and Hyperhomocysteinemia, University Paris 7-Denis Diderot, EA 3508, Tour 54, E2-54-53, Case 7104, 2 Place Jussieu, 75251 Paris, France.

Down syndrome (DS), affecting 1/700 live births, is the major genetic cause of mental retardation (MR), a cognitive disorder with hard impact on public health. DS brain is characterized by a reduced cerebellar volume and number of granular cells, defective cortical lamination and reduced cortical neurons, malformed dendritic trees and spines, and abnormal synapses. These neurological alterations, also found in trisomic mouse models, result from gene-dosage effects of Human Chromosome 21 (HC21) on the expression of critical developmental genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!