Ciliates in chalk-stream habitats congregate in biodiversity hot spots.

Res Microbiol

Queen Mary University of London, School of Biological and Chemical Sciences, The River Laboratory, Wareham, Dorset BH20 6BB, UK.

Published: September 2010

Free-living ciliates are a diverse group of microbial eukaryotes that inhabit aquatic environments. They have a vital role within the 'microbial loop', being consumers of microscopic prey such as bacteria, micro-algae, and flagellates, and representing a link between the microscopic and macroscopic components of aquatic food webs. This investigation describes the ciliate communities of four habitats located in the catchment of the River Frome, the major chalk-stream in southern Britain. The ciliate communities were characterised in terms of community assemblage, species abundance and size classes. The ciliate communities investigated proved to be highly diverse, yielding a total of 114 active species. An additional 15 'cryptic' ciliate species were also uncovered. Heterogeneity in the ciliate communities was evident at multiple spatial scales, revealing hot spots of species richness, both within and between habitats. The ciliate communities of habitats with flowing water were composed of smaller ciliates compared to the still-water habitats examined.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resmic.2010.05.016DOI Listing

Publication Analysis

Top Keywords

ciliate communities
20
hot spots
8
communities habitats
8
ciliate
6
habitats
5
communities
5
ciliates chalk-stream
4
chalk-stream habitats
4
habitats congregate
4
congregate biodiversity
4

Similar Publications

Evolutionary change within community members and shifts in species composition via species sorting contribute to community and trait dynamics. However, we do not understand when and how both processes contribute to community dynamics. Here, we estimated the contributions of species sorting and evolution over time (60 days) in bacterial communities of 24 species under selection by a ciliate predator.

View Article and Find Full Text PDF

A novel open-source cultivation system helps establish the first full cycle chemosynthetic symbiosis model system involving the giant ciliate .

Front Microbiol

December 2024

Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States.

Symbiotic interactions drive species evolution, with nutritional symbioses playing vital roles across ecosystems. Chemosynthetic symbioses are globally distributed and ecologically significant, yet the lack of model systems has hindered research progress. The giant ciliate and its sulfur-oxidizing symbionts represent the only known chemosynthetic symbiosis with a short life span that has been transiently cultivated in the laboratory.

View Article and Find Full Text PDF

Chlorine disinfectant significantly changed microfauna habitat, community structure, and colonization mode in wastewater treatment plants.

Appl Environ Microbiol

December 2024

Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.

Unlabelled: During the coronavirus disease 2019 epidemic, excessive chlorine disinfectants have been used to block the spread of severe acute respiratory syndrome-coronavirus 2, resulting in large amounts of residual disinfectants entering wastewater treatment plants (WWTPs) through sewage systems. So far, no relevant research has been conducted on the impact of chlorine disinfectants on microfauna, an important microbial component in activated sludge treatment systems. This study comprehensively investigated the changes in microfauna habitat, community structure, and colonization mode under the chlorine stress by combining the full-scale WWTP survey and laboratory-scale sequencing batch reactor experiments.

View Article and Find Full Text PDF

Phenotypic plasticity of symbiotic organ highlight deep-sea mussel as model species in monitoring fluid extinction of deep-sea methane hydrate.

Sci Total Environ

December 2024

Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Laoshan Laboratory, Qingdao 266071, China. Electronic address:

Methane hydrates stored in cold seeps are an important source of energy and carbon for both the endemic chemosynthetic community and humanity. However, the methane fluids may cease and even stop naturally or anthropogenically, calling for a thorough evaluation of its potential impact on the endemic species and local chemosynthetic ecosystems. As one dominant megafauna in cold seeps, some of the deep-sea mussels rely on methanotrophic endosymbionts for nutrition and therefore could serve as a promising model in monitoring the dynamic changes of methane hydrate.

View Article and Find Full Text PDF

Effects of temporal, spatial, and environmental factors on ciliates community in northeastern South China Sea, with notes on co-occurrence patterns of environment, phytoplankton, and ciliate.

Microbiol Spectr

January 2025

Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China.

Unlabelled: Little is known about temp-spatial variations and determining mechanism of microplankton community from continental shelf to deep basin. Here, the distribution and determinants of ciliates in the northeastern South China Sea were investigated in summer and winter. We found that the alpha diversity were generally similar, but community composition showed clear difference in summer and winter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!