Visualizing neuromorphology and in particular neuropathology has been the focus of many researchers in the quest to solve the numerous questions that are still remaining related to several neurological and neuropsychiatric diseases. Over the last years, intense research into microscopy techniques has resulted in the development of various new types of microscopes, software imaging systems, and analysis programs. This review briefly discusses some key techniques, such as confocal stereology and automated neuron tracing and reconstruction, and their applications in neuroscience research. Special emphasis is placed on needs for further developments, such as the demand for higher-throughput analyses in quantitative neuromorphology. These developments will advance basic neuroscience research as well as pharmaceutical and biotechnology research and development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchemneu.2010.06.005 | DOI Listing |
J Transl Med
January 2025
Department of Gastroenterology, Air Force Medical Center, No. 30 Fucheng Road, Haidian District, Beijing, 100142, China.
Background: Inflammatory bowel disease (IBD) is a chronic condition influenced by diet, which affects gut microbiota and immune functions. The rising prevalence of IBD, linked to Western diets in developing countries, highlights the need for dietary interventions. This study aimed to assess the impact of white kidney beans (WKB) on gut inflammation and microbiota changes, focusing on their effects on enteric glial cells (EGCs) and immune activity in colitis.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Endocrine Medicine, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201306, Chin, China.
Background And Objective: Mitochondria are crucial to the function of renal tubular cells, and their dynamic perturbation in many aspects is an important mechanism of diabetic kidney disease (DKD). Single-nucleus RNA sequencing (snRNA-seq) technology is a high-throughput sequencing analysis technique for RNA at the level of a single cell nucleus. Here, our DKD mouse kidney single-cell RNA sequencing conveys a more comprehensive mitochondrial profile, which helps us further understand the therapeutic response of this unique organelle family to drugs.
View Article and Find Full Text PDFNat Methods
January 2025
Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS, Bordeaux, France.
Nat Commun
January 2025
Center for Electron Microscopy, South China University of Technology, Guangzhou, China.
Electron ptychography, recognized as an ideal technique for low-dose imaging, consistently achieves deep sub-angstrom resolution at electron doses of several thousand electrons per square angstrom (e/Å) or higher. Despite its proven efficacy, the application of electron ptychography at even lower doses-necessary for materials highly sensitive to electron beams-raises questions regarding its feasibility and the attainable resolution under such stringent conditions. Herein, we demonstrate the implementation of near-atomic-resolution ( ~ 2 Å) electron ptychography reconstruction at electron doses as low as ~100 e/Å, for metal-organic frameworks (MOFs), which are known for their extreme sensitivity.
View Article and Find Full Text PDFSci Rep
January 2025
Applied Research and Technology, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, IL, 60064, USA.
Measurement of glycated hemoglobin (HbA1c) in human red blood cells plays a critical role in the diagnosis and treatment of diabetes mellitus. However, recent studies have suggested large variation in the relationship between average glucose levels and HbA1c, creating the need to understand glucose variability at the cellular level. Here, we devised a fluorescence-based method to quantitatively observe GLUT1-mediated intracellular glucose analog tracer uptake in individual RBCs utilizing microfluidics and confocal microscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!