We studied nucleotide usage biases in 4-fold degenerated sites of all the genes from leading and lagging strands of 30 bacterial genomes. The level of guanine in 4-fold degenerated sites (G4f) is significantly lower in genes from lagging strands than in genes from leading strands, probably because of the faster rates of guanine oxidation in single-stranded DNA leading to G to T transversions. The rates of cytosine deamination causing C to T transitions are also higher in lagging strands. We showed that the level of codons able to form stop-codons by the way of G to T transversions and C to T transitions is always higher than the level of codons able to form stop-codons by the way of C to A transversions and G to A transitions. This circumstance can be an explanation of the lower percent of ORFs in lagging strands of bacterial replichores than in leading strands.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2010.06.002DOI Listing

Publication Analysis

Top Keywords

lagging strands
16
leading strands
12
genes lagging
8
4-fold degenerated
8
degenerated sites
8
genes leading
8
strands bacterial
8
transitions higher
8
level codons
8
codons form
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!