Since the mid 1990s, microarray analysis has become one of the few tools that can analyze the entire contents of a cell regarding a specific information type. Especially since the development of whole genome microarrays the technique can be considered truly holistic. Most DNA based microarrays are used for the analysis of the total of messenger RNAs (transcriptome) and provide a snap-shot of what's going on in a cell population at the time of sampling. Within the last few years also full genome plant microarrays have become available for several crop species. With these it has been shown that several growing conditions can be separated based on their transcriptome pattern, such as location, year of harvest and agricultural input system, but also different cultivars of the same crop species, including genetically modified ones. A database comprising expression levels of the transcriptome in many different circumstances with a history of safe use would be a good comparator for evaluation of new agricultural practices or cultivars, genetically modified or otherwise obtained. New techniques as next generation sequencing may overcome issues on throughput time and cost, standard operation procedures and array design for individual crops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yrtph.2010.06.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!