It is estimated that over 10% of the adult population in developed countries have some degree of chronic kidney disease (CKD). CKD is a progressive and irreversible deterioration of the renal excretory function that results in implementation of renal replacement therapy in the form of dialysis or renal transplant, which may also lead to death. CKD poses a growing problem to society as the incidence of the disease increases at an annual rate of 8%, and consumes up to 2% of the global health expenditure. CKD is caused by a variety of factors including diabetes, hypertension, infection, reduced blood supply to the kidneys, obstruction of the urinary tract and genetic alterations. The nephropathies associated with some of these conditions have been modeled in animals, this being crucial to understanding their pathophysiological mechanism and assessing prospective treatments at the preclinical level. This article reviews and updates the pathophysiological knowledge acquired primarily from experimental models and human studies of CKD. It also highlights the common mechanism(s) underlying the most relevant chronic nephropathies which lead to the appearance of a progressive, common renal phenotype regardless of aetiology. Based on this knowledge, a therapeutic horizon for the treatment of CKD is described. Present therapy primarily based upon renin-angiotensin inhibition, future diagnostics and therapeutic perspectives based upon anti-inflammatory, anti-fibrotic and hemodynamic approaches, new drugs targeting specific signaling pathways, and advances in gene and cell therapies, are all elaborated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pharmthera.2010.05.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!