Cryptosporidium parvum is a waterborne protozoan parasite that is found intracellularly in host animals, including humans, and causes severe diarrhea, which can lead to the death of an immunocompromised individual. Previously, we found that this organism is highly radioresistant as it can productively infect mice after exposure to a 10-kGy dose of γ-radiation. To understand how C. parvum avoids radiation damage, we characterized its protein expression patterns 6, 24, and 48 h after a 10-kGy dose of γ-radiation using two-dimensional PAGE. The gels showed 10 silver-stained spots that increased or decreased in size following γ-irradiation. Five proteins contained in these spots were identified using MALDI-TOF MS peptide fingerprinting, and two of these showed an increase in expression after γ-irradiation. These proteins were identified by LC-MS/MS as proteasome subunit alpha type 4 (NTN hydrolase fold) and thioredoxin peroxidase-like protein. The roles of these two upregulated proteins as related to the radioresistance of C. parvum remain to be evaluated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exppara.2010.06.016 | DOI Listing |
PLoS Negl Trop Dis
January 2025
State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China.
Background: The determinants of differences in host infectivity among Cryptosporidium species and subtypes are poorly understood. Results from recent comparative genomic studies suggest that gains and losses of multicopy subtelomeric genes encoding insulinase-like proteases (INS-19 and INS-20 in Cryptosporidium parvum and their orthologs in closely related species) may potentially contribute to these differences.
Methodology/principal Findings: In this study, we investigated the expression and biological function of the INS-19 and INS-20 of C.
is a common, waterborne gastrointestinal parasite that causes diarrheal disease worldwide. Currently there are no effective therapeutics to treat cryptosporidiosis in at-risk populations. Since natural products are a known source of anti-parasitic compounds, we screened a library of extracts and pure natural product compounds isolated from bacteria and fungi collected from subterranean environments for activity against .
View Article and Find Full Text PDFInt J Vet Sci Med
January 2025
Galicia (Grupo INVESAGA). Departamento de Patología Animal. Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain, Investigación en Sanidad Animal.
Although , and some species are frequently involved in neonatal calf diarrhoea (NCD), detailed studies on their interactions are scarce. Therefore, a cross-sectional study including faecal samples from 404 diarrhoeic calves aged 0-30 days was performed. oocysts and cysts were detected by immunofluorescence antibody test and positive samples were molecularly characterized.
View Article and Find Full Text PDFFood Waterborne Parasitol
March 2025
Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan.
is a genus of parasitic protozoa known to cause diarrheal disease that impacts both humans and animals through infection of various vertebrate species. Bats are recognized as reservoirs for zoonotic pathogens, including . The Philippines, renowned for its rich biodiversity, is home to diverse bat species, providing a unique ecological setting to investigate infection dynamics.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2025
Department of Biochemistry, University of Washington, Seattle, WA 98195, United States. Electronic address:
Cryptosporidium parvum is a protozoan parasite that causes severe diarrheal illness in children and each year nearly 50,000 children under age 5 die due to the disease. Despite tremendous research efforts, there remains a lack of effective therapies and vaccines. Novel inhibitors against N-myristoyltransferase of C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!