The human ghrelin receptor (GHS-R1a) is known to display a high level of signaling in the absence of ligand. The Trp276, located in the fully conserved CWXP motif of G protein-coupled receptors, is believed to function as a rotameric switch in these receptors. A comparative modelling of GHS-R1a with the motilin receptor, the most related G protein-coupled receptor to GHS-R1a known to date, but characterized by a very low ligand-independent signaling level, revealed that only two surrounding residues of Trp276, that are Val131 and Ile134, were different from these receptors. We mutated them at once in GHS-R1a to create a "motilin receptor-like" environment of Trp276 in order to study the consequences on GHS-R1a activation. We studied the pharmacological properties of the W276A, V131L-I134M GHS-R1a mutants. Basal as well as maximal ghrelin-induced signaling was assessed both by inositol-phosphate accumulation and SRE pathways. As compared to the wild type receptor, the SRE-luciferase assay displayed a markedly impaired basal activity for W276A whereas that of V131L-I134M was, strikingly, two fold increased. Nevertheless, the efficacy of ghrelin to bind or to stimulate mutant receptors remained unchanged. It is concluded that Trp276, Val131 and Ile134 have a significant impact on constitutive signaling of GHS-R1a, V131L-I134M being the first example of a GHS-R1a mutant with a higher basal activity than the wild type receptor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2010.06.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!