Bis(monoacylglycero)phosphate (BMP) is an endosomal lipid with a unique structure that is implicated in the formation of intraendosomal vesicular bodies. Here we have characterized the effects of dioleoyl-BMP (BMP(18:1)) at concentrations of 5, 10, 15 and 20mol% on the thermotropic behavior of dipalmitoyl phosphatidylcholine (DPPC) vesicles, and compared them to those of equimolar concentrations of dioleoyl phosphatidylglycerol (DOPG), a structural isoform of BMP(18:1). Because BMP is found in the acidic environments of the late endosome and intralysosomal vesicles, samples were prepared at pH 4.2 to mimic the pH of the lysosome. Both (2)H NMR of perdeuterated DPPC and spin-labeled EPR with 16-doxyl phosphatidylcholine were utilized in these investigations. NMR and EPR results show that BMP(18:1) induces a lowering in the main phase transition temperature of DPPC similar to that of DOPG. The EPR studies reveal that BMP(18:1) induced more disorder in the L(beta) phase when compared to equimolar concentrations of DOPG. Analysis from dePaked (2)H NMR spectra in the L(alpha) phase reveals that BMP(18:1) induces less disorder than equal concentrations of DOPG. Additionally, the results demonstrate that BMP mixes with other phospholipids as a phospholipid and not as a detergent molecule as once speculated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3466087 | PMC |
http://dx.doi.org/10.1016/j.chemphyslip.2010.06.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!